A Learner’s Guide to
Real-World Programming
with Visual C# and .NET

Boss your
M data around
. with LINQ

secrets of |
abstraction and ,,‘1;
inheritance

Discover the 9

Build a fully |
functional

retro classic
arcade game

Learn how

extension
methods helped
Sue bend the
rules in Objectville

See how Jim used
generic collections to
wrangle his data

Andrew Stellman

O REILLY" & Jennifer Greene

9

Head First C#

Programming Languages/Microsoft C#/.NET

What will you learn from this book?

Head First C# is a complete learning experience for programming
with C#, the .NET Framework, and the Visual Studio IDE. Built for
your brain, this book covers C# & .NET 4.0 and Visual Studio 2010,
and teaches everything from inheritance to serialization. You'll
query your data with LINQ, draw graphics and animation, and
learn all about classes and object-oriented programming, all
through building games, doing hands-on projects, and solving
puzzles. You'll become a solid C# programmer, and you'll have a
great time along the way!

Understand the diffevente between

e g, / tlasses and objects.

Exertise Your C#
I skills bY bui]din?J an
| invaders game...

| ..and ereating a role—playing
9ame with deadly enemies.

L.Céii’h howfo?]g-{{_:};,t fDE‘to . = - '- | __ =y

do Yyour grunt work for You. |||| T ' = ~ Inheritance
- &‘% Create a beehive I|I , s —= -t - Encapsu[aﬁnn
= </ simulation ﬁﬁ"r_l
~ ?rogrampfs'mg L Abstraction
% double—buttered Master the printiples of _
o animation. ob\jc(.{:-o‘rien‘tcd Programming. poly morplusm

Why does this book look so different?

We think your time is too valuable to spend struggling with new
concepts. Using the latest research in cognitive science and learning
theory to craft a multi-sensory learning experience, Head First C# uses a
visually rich format designed for the way your brain works, not a text-
heavy approach that puts you to sleep.

US $49.99 CAN $62.99
ISBN: 978-1-449-38034-2

54999
LT LT

7814497380342

Free online edition
for 45 days with
purchase of this book.
Details on last page.

Safari

Books Online

“If you want to learn
C# in depth and have
fun doing it, this is
THE book for you.”

—Andy Parken,
fledgling C# programmer

“Head First C# will
guide beginners of all
sorts to a long and
productive relation-
ship with C# and the
.NET Framework.”

—Chris Burrows,

Deuveloper on Microsoft’s
C# Compiler team

“Head First C# is a
highly enjoyable
tutorial, full of
memorable examples
and entertaining
exercises.”

Systems, the UK’s
primary healthcare
software su o1, co-author

of C# 4.0 in a Nutshell

O’REILLY"

oreilly.com
headfirstlabs.com

Advance Praise for Head First C#

“I’'ve never read a computer book cover to cover, but this one held my interest from the first page to the
last. If you want to learn C# in depth and have fun doing it, this is THE book for you.”

— Andy Parker, fledgling C# programmer

“It’s hard to really learn a programming language without good engaging examples, and this book is full
of them! Head First C# will guide beginners of all sorts to a long and productive relationship with C#
and the .NET Framework.”

—Chris Burrows, developer for Microsoft’s C# Compiler team

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very
approachable while covering a great amount of detail in a unique style. If you’ve been turned off by
more conventional books on C#, you’ll love this one.”

—Jay Hilyard, software developer, co-author of C# 3.0 Cookbook

“I’d reccomend this book to anyone looking for a great introduction into the world of programming and
C#. Irom the first page onwards, the authors walks the reader through some of the more challenging
concepts of C# in a simple, easy-to-follow way. At the end of some of the larger projects/labs, the
reader can look back at their programs and stand in awe of what they’ve accomplished.”

—David Sterling, developer for Microsoft’s Visual C# Compiler team

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its
lively style is sure to captivate readers—from the humorously annotated examples, to the Fireside Chats,
where the abstract class and interface butt heads in a heated argument! For anyone new to programming,
there’s no better way to dive in.”

—Joseph Albahari, C# Design Architect at Egton Medical Information Systems,
the UK’s largest primary healthcare software supplier,
co-author of C# 3.0 in a Nutshell

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer
wanting to jump into the C# waters. I will recommend it to the advanced developer that wants to
understand better what is happening with their code. [I will recommend it to developers who| want to
find a better way to explain how C# works to their less-seasoned developer friends.”

—Giuseppe Turitto, C# and ASP.NET developer for Cornwall Consulting Group
‘Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a
computer, and enjoy the ride as you engage your left brain, right brain, and funny bone.”
—Bill Mietelski, software engineer
“Going through this Head First C# book was a great experience. I have not come across a book series

which actually teaches you so well.... This is a book I would definitely recommend to people wanting to

learn C#”
—XKrishna Pala, MCP

Praise for other Head First books

“Kathy and Bert’s Head First fava transforms the printed page into the closest thing to a GUI you’ve ever

seen. In a wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do next?’
experience.”

—Warren Keuffel, Software Development Magazine

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status,
Head First Java covers a huge amount of practical matters that other texts leave as the dreaded “exercise
for the reader....” It’s clever, wry, hip and practical—there aren’t a lot of textbooks that can make that
claim and live up to it while also teaching you about object serialization and network launch protocols. ”

—Dr. Dan Russell, Director of User Sciences and Experience Research

IBM Almaden Research Center (and teaches Artificial Intelligence at
Stanford University)

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”

—Ken Arnold, former Senior Engineer at Sun Microsystems
Co-author (with James Gosling, creator of Java),
The Java Programming Language

“I feel like a thousand pounds of books have just been lifted off of my head.”

—Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for

practical development strategies—gets my brain going without having to slog through a bunch of tired
stale professor-speak.”

—Travis Kalanick, Founder of Scour and Red Swoosh
Member of the MIT TR100

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the
Head First crew, there is the penultimate category, Head First books. They’re the ones that are dog-

eared, mangled, and carried everywhere. Head First SQL is at the top of my stack. Heck, even the PDF I
have for review is tattered and torn.”

— Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving.”

— Cory Doctorow, co-editor of Boing Boing
Author, Down and Out in the Magic Kingdom
and Someone Comes to Town, Someone Leaves Town

Praise for other Head First books
“I received the book yesterday and started to read it...and I couldn’t stop. This is definitely tres ‘cool.” It
is fun, but they cover a lot of ground and they are right to the point. I'm really impressed.”

— Erich Gamma, IBM Distinguished Engineer, and co-author of
Design Patterns

“One of the funniest and smartest books on software design I've ever read.”

— Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, CEO, Newsvine, Inc.

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— Ken Goldstein, Executive Vice President, Disney Online

“I ¥ Head First HITML with CSS & XHTML—it teaches you everything you need to learn in a ‘fun
coated’ format.”

— Sally Applin, UI Designer and Artist

“Usually when reading through a book or article on design patterns, I'd have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller... Bueller... Bueller...” this book is on the float
belting out “‘Shake it up, baby!””

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Other related books from O’Reilly
Programming C# 4.0
C# 4.0 in a Nutshell
C# Essentials

C# Language Pocket Reference

Other books in O’Reilly’s Head First series
Head First Java
Head First Object-Oriented Analysis and Design (OOA&D)
Head Rush Ajax
Head First HTML with CSS and XHTML
Head First Design Patterns
Head First Servlets and JSP
Head First EJB
Head First PMP
Head First SQL
Head First Software Development
Head First JavaScript
Head First Ajax
Head First Statistics
Head First Physics
Head First Programming
Head First Ruby on Rails
Head First PHP & MySQL
Head First Algebra
Head First Data Analysis
Head First Excel

Head First C#

Second Edition
Wouldn't it be dreamy
if there was a C# book that
was more fun than endlessly
debugging code? It's probably
nothing but a fantasy....
Andrew Stellman
Jennifer Greene

O’REILLY"

Beijing « Cambridge « Kdin + Sebastopol * Taipei * Tokyo

Head First C#

Second Edition

by Andrew Stellman and Jennifer Greene

Copyright © 2010 Andrew Stellman and Jennifer Greene. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (kttp:/ /my.safaribooksonline.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Cover Designers: Louise Barr, Karen Montgomery
Production Editor: Rachel Monaghan

Proofreader: Emily Quill

Indexer: Lucie Haskins

Page Viewers: Quentin the whippet and Tequila the pomeranian

Printing History:

November 2007: First Edition.
May 2010: Second Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First C#,
and related trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, Windows, Visual Studio, MSDN, the .NET logo, Visual Basic and Visual C# are registered trademarks of
Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No bees, space aliens, or comic book heroes were harmed in the making of this book.
ISBN: 978-1-449-38034-2
[SB]

This book is dedicated to the loving memory of Sludgie the Whale,
who swam to Brooklyn on April 17, 2007.

You were only in our canal for a day,
but you’ll be in our hearts forever.

the authors

Thanks for buying our book! We really
love writing about this stuff, and we
hope you get a kick out of reading it...

This photo (and the photo of the
Gowanus Canal) by Nisha Sondhe

Andrew Stellman, despite being raised a
New Yorker, has lived in Pittsburgh fwice. The
first time was when he graduated from Carnegie
Mellon’s School of Computer Science, and then
again when he and Jenny were starting their

consulting business and writing their first book for
O’Reilly.

When he moved back to his hometown, his first
job after college was as a programmer at EMI-
Capitol Records—which actually made sense,
since he went to LaGuardia High School of
Music and Art and the Performing Arts to study
cello and jazz bass guitar. He and Jenny first
worked together at that same financial software
company, where he was managing a team of
programmers. He’s had the privilege of working
with some pretty amazing programmers over the
years, and likes to think that he’s learned a few
things from them.

When he’s not writing books, Andrew keeps
himself busy writing useless (but fun) software,
playing music (but video games even more),
experimenting with circuits that make odd noises,
studying taiji and aikido, having a girlfriend
named Lisa, and owning a pomeranian.

Jenny and Andvew have been building software and writing
fivst met in 1998. Their fivst book, Applied Software Proj

AndrCW/-\

...because we know
you're going to have a
great time learning C#.

Jennifer Greene studied philosophy in
college but, like everyone else in the field, couldn’t
find a job doing it. Luckily, she’s a great software
engineer, so she started out working at an online
service, and that’s the first time she really got a

good sense of what good software development
looked like.

She moved to New York in 1998 to work on
software quallity at a financial software company.
She managed a team of testers at a really cool
startup that did artificial intelligence and natural
language processing.

Since then, she’s traveled all over the world to work
with different software teams and build all kinds of
cool projects.

She loves traveling, watching Bollywood movies,

reading the occasional comic book, playing PS3

games (especially LittleBigPlanet!), and owning a
whippet.

about software engineering together since they
eet Management, was published by O'Reilly in

2005. They published their first book in the Head Ficst sevies, Head First PMP, in 2007

They founded Stellman €l Greene Consul{:ing in 2003 +o build
stientists studying herbicide exposure in Vietnam vets. When £

a veally neat softwave yro\)cd’, for
hcy’rc not building software or writing

books, they do a lot of speaking at tonfevences and meetings of software engineers, architeets and

Fro)cé{ managevs.

viii

Chetk ovt their blog, Building Better Software: http:// www.stellman—greene.com

table of contents

Table of Contents (Summary)

Intro XXIX
1 Get productive with G#: Visual Applications, in 10 minutes or less 1
2 It’s All Just Code: Under the hood 41
3 Objects: Get Oriented: Making code make sense 85
4 Types and References: 1t’s 10:00. Do you know where your data vs? 125

C# Lab 1: 4 Day at the races 169
5 Encapsulation: Reep your privates. .. private 179
6 Inheritance: Your object’s family tree 215
7 Interfaces and abstract classes: Making classes keep their promises 269
8 Enums and collections: Storing lots of data 327

C# Lab 2: The Quest 385
9 Reading and Writing Files: Save the byte array, save the world 407
10 Exception Handling: Putting out fires gets old 463
11 Events and Delegates: What your code does when you’re not looking 507
12 Review and Preview: Knowledge, power, and building cool stuff 541
13 Controls and Graphics: Make it pretty 589
14 Captain Amazing: The Death of the Object 647
15 LINQ: Get control of your data 685

C# Lab 3: Invaders 713

Leftovers: The top 11 things we wanted to include in this book 735

Table of Contents (the rea] thing)
Intro

Your brain on C#. Youre sitting around trying to learn something, but
your brain keeps telling you all that learning isn’t important. Your brain’s saying,
“Better leave room for more important things, like which wild animals to avoid and
whether nude archery is a bad idea.” So how do you trick your brain into thinking

that your life really depends on learning C#?

Who is this book for? XXX
We know what you’re thinking Xxx1
Metacognition xxxiii
Bend your brain into submission XXXV
What you need for this book XXXV1
Read me XXXVil
The technical review team XXXViil
Acknowledgments XXXIX

table of contents

Foree

Name: Laverne Smith

Company: /2 Industries

Tel

Email; Laverne.Smith@xyZindustriescom

Cli

»

t:__

lephone: (a12)sss-8130

ient: ves,

Last call: 05/a/07

—

—_— A

2

doé’ .NET Framework

solu

e

Data access

tions

—
\/

get productive with C#
Visual Applications, in 10 minutes or less

Want to build great programs really fast?

With C#, you’ve got a powerful programming language and a valuable tool
at your fingertips. With the Visual Studio IDE, you'll never have to spend hours
writing obscure code to get a button working again. Even better, you'll be able
to focus on getting your work done, rather than remembering which method
parameter was for the name of a button, and which one was for its /label. Sound

appealing? Turn the page, and let's get programming.

Why you should learn C# 2
C# and the Visual Studio IDE make lots of things easy
Help the CEO go paperless 4

Get to know your users’ needs before you start
building your program

What you do in Visual Studio... 8

What Visual Studio does for you... 8
Develop the user interface 12
Visual Studio, behind the scenes 14
Add to the auto-generated code 15
We need a database to store our information 18
The IDE created a database 19
\ SQL is its own language 19
J Creating the table for the Contact List 20
, Finish building the table 25
) Insert your card data into the database 26
Connect your form to your database objects with a data source 28
Add database-driven controls to your form 30

How to turn YOUR application into EVERYONE'’S application 35

Give your users the application 36
i You’re NOT done: test your installation 37
You've built a complete data-driven application 38

-
ﬁuﬂd this form =4

x

A class eontains a pigte of your
program (although some very small

programs ean have Just one tlass). |

A ¢lass has one or move methods.

Your methods always have o live
inside a elass. And methods are
made up oF statements — like

the ones you've already seen.

Every time you m

define 3 names K
pace £
separate £rom the it that

table of contents

it’s all just code
Under the hood

You’re a programmer, not just an IDE user.

You can get a lot of work done using the IDE. But there’s only so far it
can take you. Sure, there are a lot of repetitive tasks that you do when
you build an application. And the IDE is great at doing those things for
you. But working with the IDE is only the beginning. You can get your
programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

When you'e doing this... 42
...the IDE does this 43
Where programs come from 44
The IDE helps you code 46
When you change things in the IDE, you’re also changing

your code 48
Anatomy of a program 50
Your program knows where to start 52
Two classes can be in the same namespace 59
Your programs use variables to work with data 60
C# uses familiar math symbols 62
Use the debugger to see your variables change 63
Loops perform an action over and over 65
Time to start coding 66
if/else statements make decisions 67
Set up conditions and see if theyre true 68

akc a new F“’SVQM, Y°“

its code is
NET Framework tlasses.

g :Cl,a_ss. e

! Method 1
| statement
statement |

i Method 2
statement
statement .

¥ Fun with iffelie statements!

Changa tha coller i e
h:::;wt-'d [] Eratia cotoe changng

Xi

table of contents

objects: get orfented!
Making Code Make Sense

Every program you write solves a problem.

When you’re building a program, it’s always a good idea to start by thinking about what
problem your program’s supposed to solve. That's why objects are really useful. They
let you structure your code based on the problem it's solving, so that you can spend your
time thinking about the problem you need to work on rather than getting bogged down in
the mechanics of writing code. When you use objects right, you end up with code that’s

intuitive to write, and easy to read and change.

How Mike thinks about his problems 86
How Mike’s car navigation system thinks about his problems 87
Mike’s Navigator class has methods to set and modify routes 88
Use what you've learned to build a program that uses a class 89
Mike can use objects to solve his problem 92
You use a class to build an object 93
@ 5 When you create a new object from a class, it’s called an instance
o f that cl 94
Navigator %V/'gg\of ¥ o that class
SetDestination() A better solution...brought to you by objects! 95
ModifyRoute ToAvoid() . .
ModifyRouteTolnclude() An instance uses fields to keep track of things 100
GetRoute() .
GetTimeToDestination() a 2 Let’s create some instances! 101
TotalDistance() "9 .
%> What’s on your program’s mind 103
%ngof . .
You can use class and method names to make your code intuitive 104
Give your classes a natural structure 106
@ E Class diagrams help you organize your classes so they make sense 108
%Vigatof ® Build a class to work with some guys 112
Create a project for your guys 113
Build a form to interact with the guys 114

When You define a tlass, you define

its methods, just like a blueprint There’s an easier way to initialize ObjCCtS 117
defines the layout of the house.

You ¢an use one blueprint 4o

make any number of houses,

and you ean use one ¢lass to

make any mumber of objeets
xii

table of contents

types and relerences
It’s 10:00. Do you know where your data is?

Data type, database, Lieutenant Commander Data...

it’s all important stuff. without data, your programs are useless. You
need information from your users, and you use that to look up or produce new
information to give back to them. In fact, almost everything you do in programming
involves working with data in one way or another. In this chapter, you'll learn the
ins and outs of C#'s data types, see how to work with data in your program, and

even figure out a few dirty secrets about objects (pssst...objects are data, too).

The variable’ type determines what kind of data it can store 126
A variable is like a data to-go cup 128
10 pounds of data in a 5 pound bag 129

Even when a number is the right size, you can’t just assign it to
any variable 130

When you cast a value that’s too big, C# will adjust it automatically 131
C# does some casting automatically 132

When you call a method, the arguments must be compatible

with the types of the parameters 133
Combining = with an operator 138
Objects use variables, too 139
Refer to your objects with reference variables 140
References are like labels for your object 141
If there aren’t any more references, your object gets
Dog £ido; garbage-collected 142
Dog lucky = new Dog(); - Multiple references and their side effects 144
oy » ob'se'c‘*% Two references means TWO ways to change an object’s data 149
A special case: arrays 150
; > T): .
fido = new Dog () ; Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches! 152
Objects use references to talk to each other 154
g 0 ,{&\/ Where no object has gone before 155
Bop e 99 obe® . .
g ob Build a typing game 160
lucky = null; \ \ /
~ poofl— &
poor: 2

/ v\ %0g oo™

xiii

table of.contents

y

N

C# Lab 1
A Day at the Races

Joe, Bob, and Al love going to the track, but they’re

tired of losing all their money. They need you to build a
simulator for them so they can figure out winners before
they lay their money down. And, if you do a good job,
they’ll cut you in on their profits.

The spec: build a racetrack simulator 170

The Finished Product 178

A Day at the Races

Xiv

table of contents

encapsulation
Keep your privates... private

Ever wished for a little more privacy?

Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal or paging through your bank statements, good objects

don'’t let other objects go poking around their fields. In this chapter, you're going to

learn about the power of encapsulation. You’ll make your object’s data private, and

add methods to protect how that data is accessed.

Kathleen is an event planner

What does the estimator do?

Kathleen’s Test Drive

Each option should be calculated individually

It easy to accidentally misuse your objects

Encapsulation means keeping some of the data in a class private

Use encapsulation to control access to your class’s methods

and fields
But is the realName field REALLY protected?

Private fields and methods can only be accessed from
inside the class

Encapsulation keeps your data pristine
Properties make encapsulation easier

Build an application to test the Farmer class
Use automatic properties to finish the class
What if we want to change the feed multiplier?

Use a constructor to initialize private fields

’b/'5 4 geX\"

—
Juice and soda.

Ty)

Decorations

—_— —— 5“%5 :ie;;gs;sfo:; (415 per person
ch +45(0 decorating
1 total cost)
number of Healthy o
people. ——> | Choice?
Food (425 per decorations? — \
erson) - T
. No / Decorations
(6750 per

Alcohol,
(520 per
person)

person +30

l decorating fee.lj

180
181
186
188
190
191

192
193

194
202
203
204
205
206
207

XV

table of contents

inheritance
Your object’s family tree

Sometimes you DO want to be just like your parents.

Ever run across an object that almost does exactly what you want your object to do?
Found yourself wishing that if you could just change a few things, that object would
be perfect? Well, that's just one reason that inheritance is one of the most powerful
concepts and techniques in the C# language. Before you're through with this chapter,
you’ll learn how to subclass an object to get its behavior, but keep the flexibility to
make changes to that behavior. You'll avoid duplicate code, model the real world

more closely, and end up with code that's easier to maintain.

Kathleen does birthday parties, too 216
We need a BirthdayParty class 217
Build the Party Planner version 2.0 218
When your classes use inheritance, you only need to write
your code once 226
Kathleen needs to figure out the cost of her parties, no matter what
kind of parties they are. 226
1/ Build up your class model by starting general and getting
more specific 227
How would you design a zoo simulator? 228
Use inheritance to avoid duplicate code in subclasses 229
Think about how to group the animals 231
Create the class hierarchy 232
Every subclass extends its base class 233
A subclass can override methods to change or replace methods
it inherited 238
af Any place where you can use a base class, you can use one of
its subclasses instead 239
A subclass can hide methods in the superclass 246
Use the override and virtual keywords to inherit behavior 248
Now you’re ready to finish the job for Kathleen! 252
Build a beehive management system 257
First you’ll build the basic system 258
Use inheritance to extend the bee management system 263

xvi

table of contents

interfaces and abstract classes
Making classes keep their promises

Actions speak louder than words.

Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from. That’'s where interfaces come in—they

let you work with any class that can do the job. But with great power comes great
responsibility, and any class that implements an interface must promise to fulfill all of

its obligations...or the compiler will break their kneecaps, see?

% Inheritance Let’s get back to bee-sics 270
nhermanc

*

* We can use inheritance to create classes for different types of bees 271

An interface tells a class that it must implement certain methods

. and properties 272

x Abstraction Prop
Use the interface keyword to define an interface 273

E (ati *‘ Classes that implement interfaces have to include ALL of the
neapsutation interface’s methods 275
* * You can’t instantiate an interface, but you can reference an interface 278
polymorp]mism Interface references work just like object references 279
‘*_ You can find out if a class implements a certain interface with “is” 280
Interfaces can inherit from other interfaces 281
Location
Name Upcasting works with both objects and interfaces 285
Exis Downcasting lets you turn your appliance back into a coffee maker 286
Description() Upcasting and downcasting work with interfaces, too 287
3 K There’s more than just public and private 291
Room Outside Access modifiers change visibility 292
Decoration Hot

Some classes should never be instantiated 295
An abstract class is like a cross between a class and an interface 296
An abstract method doesn’t have a body 299

Polymorphism means that one object can take many different forms 307

I Dining
Living Room Room

Front Yard D

Kitchen

Back Yard

xvii

table of contents

enums and collections
Storing lots of data

When it rains, it pours.

In the real world, you don’t get to handle your data in tiny little bits and pieces.
No, your data’s going to come at you in loads, piles, and bunches. You'll need
some pretty powerful tools to organize all of it, and that's where collections
come in. They let you store, sort, and manage all the data that your programs
need to pore through. That way, you can think about writing programs to work

with your data, and let the collections worry about keeping track of it for you.

Strings don’t always work for storing categories of data 328

Enums let you work with a set of valid values 329

Enums let you represent numbers with names 330

{! We could use an array to create a deck of cards... 333

Lists are more flexible than arrays 336

Generics can store any type 340

-llb/ f Collection initializers work just like object initializers 344
\J Let’s create a List of Ducks 345

ji‘# / Lists are easy, but SORTING can be tricky 346

IComparable <Duck> helps your list sort its ducks 347

. -_'/ m Use IComparer to tell your List how to sort 348
} Create an instance of your comparer object 349

IComparer can do complex comparisons 350

\j - #f Overriding a ToString() method lets an object describe itself 353

Update your foreach loops to let your Ducks and Cards

print themselves 354
You can upcast an entire list using IEnumerable 356
You can build your own overloaded methods 357
The Dictionary Functionality Rundown 364
\ \ / Build a program that uses a Dictionary 365

f ~— POO‘F! — And yet MORE collection types... 377
e A queue is FIFO—First In, First Out 378
ﬁ‘.f / AN\ A stack is LIFO Last In, First Out 379

xviii

table of

C# Lab 3
The Quest

Your job is to build an adventure game where a mighty
adventurer is on a quest to defeat level after level of
deadly enemies. You’ll build a turn-based system, which
means the player makes one move and then the enemies
make one move. The player can move or attack, and then
each enemy gets a chance to move and attack. The game
keeps going until the player either defeats all the enemies
on all seven levels or dies.

The spec: build an adventure game 386
The fun’s just beginning! 406

¥ The Quest

table of contents

reading and writing Yiles
Save the byte array, save the world

Sometimes it pays to be a little persistent.

So far, all of your programs have been pretty short-lived. They fire up, run for

a while, and shut down. But that's not always enough, especially when you're
dealing with important information. You need to be able to save your work. In
this chapter, we'll look at how to write data to a file, and then how to read that
information back in from a file. You'll learn about the .NET stream classes,

and also take a look at the mysteries of hexadecimal and binary.

.NET uses streams to read and write data 408

Different streams read and write different things 409

A FileStream reads and writes bytes to a file 410

How to write text to a file in 3 simple steps 411

Reading and writing using two objects 415

Data can go through more than one stream 416

Use built-in objects to pop up standard dialog boxes 419

O Dialog boxes are just another NET control 420

’%G}% \ \o\“'b Dialog boxes are objects, too 421

am © IDisposable makes sure your objects are disposed of properly 427

Avoid file system errors with using statements 428

Writing files usually involves making a lot of decisions 434

'%.\9 A Use a switch statement to choose the right option 435

eaqm 00 Serialization lets you read or write a whole object all at once 442

.NET uses Unicode to store characters and text 447

69 117 114 101 107 97 3 C# can use byte arrays to move data around 448

Eureka! —>» I'i'j Ii'l U-I I'I-!’T F+ :'.‘} E'.I You can read and write serialized files manually, too 451

; Working with binary files can be tricky 453

Use file streams to build a hex dumper 454

StreamReader and StreamWriter will do just fine (for now) 455

’%@O{}N’ Use Stream.Read() to read bytes from a stream 456
)}’eam oY

XX

table of contents

exception handling
Putting out fires gets old

Programmers aren’t meant to be firefighters.

You've worked your tail off, waded through technical manuals and a few engaging
Head First books, and you've reached the pinnacle of your profession: master
programmer. But you're still getting panicked phone calls in the middle of the night
from work because your program crashes, or doesn’t behave like it’s supposed

to. Nothing pulls you out of the programming groove like having to fix a strange bug...
but with exception handling, you can write code to deal with problems that come up.

Better yet, you can even react to those problems, and keep things running.

Brian needs his excuses to be mobile 464

When your program throws an exception, .NET generates an

Exception object. 468
All exception objects inherit from Exception 472
The debugger helps you track down and prevent exceptions

in your code 473
Use the IDE’s debugger to ferret out exactly what went wrong in the
Excuse Manager 474
Handle exceptions with try and catch 479
What happens when a method you want to call is risky? 480
Use the debugger to follow the try/catch flow 482
If you have code that ALWAYS should run, use a finally block 484

One class throws an exception, another class catches the exception 491

Bees need an OutOfHoney exception 492

Work's boring today. I want to
go scuba diving. Time to fire up
the Excuse generator.

An easy way to avoid a lot of problems:
using gives you try and finally for free 495

Exception avoidance: implement IDisposable to

do your own cleanup 496
The worst catch block EVER: catch-all plus comments 498
Temporary solutions are OK (temporarily) 499
A few simple ideas for exception handling 500
Brian finally gets his vacation... 505

XXi

table of contents

events and delegates
What your code does when you’re not looking

Your objects are starting to think for themselves.

You can’t always control what your objects are doing. Sometimes things...happen. And
when they do, you want your objects to be smart enough to respond to anything that
pops up. And that's what events are all about. One object publishes an event, other
objects subscribe, and everyone works together to keep things moving. Which is great,
until you want your object to take control over who can listen. That's when callbacks will

come in handy.

Ever wish your objects could think for themselves? 508
But how does an object KNOW to respond? 508
When an EVENT occurs...objects listen 509
Then, the other objects handle the event 511
Connecting the dots 512
The IDE creates event handlers for you automatically 516
Generic EventHandlers let you define your own event types 522
The forms you’ve been building all use events 523
One event, multiple handlers 524
Connecting event senders with event receivers 526
A delegate STANDS IN for an actual method 527
Delegates in action 528
An object can subscribe to an event... 531
Use a callback to control who’s listening 532
A callback is just a way to use delegates 534
The i i
ﬁ:f%ﬁﬁfx;@\e?:fw {,?J.;ﬂfya}j;i oo 8,
acks called. 90ing to travel 82 feet. Lo ko
) We want the Pitel
Ball.OnBallInPlay(70, 82) [\ cateh this ball-

- T

%

%jed

XXii

The piteher ean handle the
angle A‘(‘,he ball was hit, and
. the distance (90 is greater

x than 82).
%e,- ob,\?!"

Pitcher.CatchBall (70, 90)

table of contents

review and preview
Knowledge, power, and building cool stuff

Learning’s no good until you BUILD something.

Until you've actually written working code, it's hard to be sure if you really get some
of the tougher concepts in C#. In this chapter, we're going to use what we’ve learned
to do just that. We’'ll also get a preview of some of the new ideas coming up soon.
And we’ll do all that by building phase | of a really complex application to make
sure you've got a good handle on what you've already learned from earlier chapters.

So buckle up...it's time to build some software!

You’ve come a long way, baby 542

We’ve also become beekeepers 543

The beehive simulator architecture 544

Life and death of a flower Building the bechive simulator 545
Life and death of a flower 549

Now we need a Bee class 550

P. A. H. B. (Programmers Against Homeless Bees) 554

The hive runs on honey 554

Filling out the Hive class 558

The hives Go() method 559

We’re ready for the World 560

We’re building a turn-based system 561

Here’s the code for World 562
Giving the bees behavior 568
The main form tells the world to Go() 570

We can use World to get statistics 571

Timers fire events over and over again 572

Let’s work with groups of bees 580

A collection collects...DATA 581

LINQ makes working with data in collections and databases easy 583

age = 30291

nectar = .83
PEA
Flowe ©

One final challenge: Open and Save 585

XXiii

table of contents

controls and graphics
Make it pretty

Sometimes you have to take graphics into your own hands.
We’ve spent a lot of time relying on controls to handle everything visual in our applications.
But sometimes that’'s not enough—like when you want to animate a picture. And once
you get into animation, you’ll end up creating your own controls for your .NET programs,
maybe adding a little double buffering, and even drawing directly onto your forms.

It all begins with the Graphics object, bitmaps, and a determination to not accept the

graphics status quo.

You've been using controls all along to interact with your programs 590

Form controls are just objects 591
Use controls to animate the beehive simulator 592
Add a renderer to your architecture 594
Controls are well suited for visual display elements 596
Build your first animated control 599
Create a button to add the BeeControl to your form 602
Your controls need to dispose their controls, too! 603
A UserControl is an easy way to build a control 604
Your simulator’s renderer will use your BeeControl to draw
animated bees on your forms 606
Add the hive and field forms to the project 608
Build the renderer 609
You resized your Bitmaps using a Graphics object 618
e Your image resources are stored in Bitmap objects 619
e s Homey Use System.Drawing to TAKE CONTROL of graphics yourself 620
P = tn A 30-second tour of GDI+ graphics 621
= I'-F:-”: =i _ Use graphics to draw a picture on a form 622
Graphics can fix our transparency problem... 627
Use the Paint event to make your graphics stick 628
A closer look at how forms and controls repaint themselves 631
Double buffering makes animation look a lot smoother 634
Use a Graphics object and an event handler for printing 640

XXiv

table of contents

EA
OF THE OBJECT

Your last chance to DO something...your object’ finalizer 654
When EXACTLY does a finalizer run? 655
Dispose() works with using, finalizers work with garbage collection 656
Finalizers can’t depend on stability 658
Make an object serialize itself in its Dispose() 659
A struct looks like an object... 663
...but isn’t an object 663
Values get copied; references get assigned 664
The stack vs. the heap: more on memory 667

Use out parameters to make a method return more than one value 670

Pass by reference using the ref modifier 671
Use optional parameters to set default values 672
Use nullable types when you need nonexistent values 673
Nullable types help you make your programs more robust 674
Captain Amazing...not so much 677
Extension methods add new behavior to EXISTING classes 678
Extending a fundamental type: string 680

Welcame To
Objectville

rs

Home of Eadpmanidiome

XXV

table of contents

LINQ
Get control of your data

It’s a data-driven world...you better know how to live in it.
Gone are the days when you could program for days, even weeks, without dealing with
loads of data. But today, everything is about data. In fact, you’ll often have to work
with data from more than one place...and in more than one format. Databases, XML,
collections from other programs...it's all part of the job of a good C# programmer. And
that's where LINQ comes in. LINQ not only lets you query data in a simple, intuitive way,

but it lets you group data, and merge data from different data sources.

An easy project... 686
...but the data’ all over the place 687
LINQ can pull data from multiple sources 688
NET collections are already set up for LINQ 689
LINQ makes queries easy 690
LINQ is simple, but your queries don’t have to be 691
LINQ is versatile 694
LINQ can combine your results into groups 699
Combine Jimmy’s values into groups 700
Use join to combine two collections into one query 703
Jimmy saved a bunch of dough 704
Connect LINQ to a SQL database 706
Use a join query to connect Starbuzz and Objectville 710

o

St
€ $ 1‘*?‘

$e

3 zzoN

XXVi

table of contents

C# Lab 3

Invaders

In this lab you’ll pay homage to one of the most popular,
revered and replicated icons in video game history, a
game that needs no further introduction. It’s time to
build Invaders.

The grandfather of video games 714

And yet there’s more to do... 733

Xxvii

table of contents

leftovers

The top 11 things we wanted to include
@ in this book

The fun’s just beginning!

We’ve shown you a lot of great tools to build some really powerful software with C#. But
there’s no way that we could include every single tool, technology, or technique in this
book—there just aren’t enough pages. We had to make some really tough choices about
what to include and what to leave out. Here are some of the topics that didn’t make the
cut. But even though we couldn’t get to them, we still think that they’re important and

useful, and we wanted to give you a small head start with them.

#1. The Basics 736
#2. Namespaces and assemblies 742
#3. Use BackgroundWorker to make your Ul responsive 746
#4. The Type class and GetType() 749
#5. Equality, IEquatable, and Equals() 750
#6. Using yield return to create enumerable objects 753
#7. Refactoring 756
#8. Anonymous types, anonymous methods, and
lambda expressions 758
#9. Serializing data using DataContractSerializer 760
#10. LINQ to XML 762
5 baCkgrOUHdWOrker 1 #11. Windows Presentation Foundation 764
Did you know that C# and the NET Framework can... 766

= fleSystemiWatcher 1

Favorts Window Hep =17 =]

ﬂperformancei:ounterl T TR TR L |

Lt THTYER] St ERAMO] AT 1 Maamun 1N
Deratin 140

xxviii

how to use this boolk
Intro

T can't believe they
put that in a C#
programming book!

. o
[n this settion, we answev the burning a\uesh

i \amming book?”
“Go why DID they put that ina C# proy

XXiX

how to use this

Who is this book for?

If you can answer “yes” to all of these:

@ Do you want to learn C#?

Do you like to tinker—do you learn by doing, rather than
just reading?

Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

this book is for you.

Who should probably back away from this book?

If you can answer “yes” to any of these:

Does the idea of writing a lot of code make you bored
and a little twitchy?

Are you a kick-butt C++ or Java programmer looking for
a reference book?

Are you afraid to try something different? Would
you rather have a root canal than mix stripes with
plaid? Do you believe that a technical book can’t be
serious if C# concepts are anthropomorphized?

this book is not for you.

[Note from mavketing: this book is
for anyone with a evedit tavd.J

XXX

the intro

We know what you're thinking.

“How can this be a serious C# programming book?”
“What’s with all the graphics?”

“Can I actually learn it this way?” Your b

And we know what your brain is thinking. (

Your brain craves novelty. It’s always searching, scanning, wauting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with

the brain’s real job—recording things that matter. It doesn’t bother
saving the boring things; they never make it past the “this is obviously
not important” filter.

How does your brain krow what’s important? Suppose you’re out for
a day hike and a tiger jumps in front of you, what happens inside your
head and body?

Neurons fire. Emotions crank up. Chemicals surge.

Great. Only
700 more dull,
dry, boring pages.

And that’s how your brain knows. ..

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. \oue beain e
You're studying. Getting ready for an exam. Or trying to learn some
tough technical topic your boss thinks will take a week, ten days at
the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never have posted those “party” photos on your Facebook page.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I'm
registering on the emotional Richter scale right now, I really do want
you to keep this stuff’ around.”

you are here » XXXi

XXXii

how to use this book

We think of a “Head First’ reader as a learner.

So what does it take to learn something? First, you have to getit, then

some of the Head First learning principles:

solve problems related to the content.

Use a conversational and personalized style. Inrece

students performed up to 40% better on post-learning tests if the conten

directly to the reader, using a first-person, conversational style rather than

taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don't take yourself too seriously. Which would you pay more attention to:a

stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you
actively flex your neurons, nothing much happens in your head. A reader

has to be motivated, engaged, curious, and inspired to solve problems, draw

conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both

sides of the brain and multiple senses.

% it's not.

something is largely dependent on its emotional content. You remem

heart-wrenching stories about a boy and his dog. We're talking emotions

you solve a puzzle, learn something everybody else thinks is hard, or reali

intro

make sure
you don’t forgetit. It's not about pushing facts into your head. Based on the
|atest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than texton a page. We know what turns your brain on.

Make it visual. Images are far more memorable than words alone, and
make learning much more effective (up to 89% improvement in recall and
transfer studies). It also makes things more understandable. Put the

words within or near the graphics they relate to, rather than on
the bottom or on another page, and learners will be up to twice as likely to

nt studies,
t spoke

Get—and keep—the reader’s attention. Wwe've all had the”l really want to learn this but
| can't stay awake past page one” experience. Your brain pays attention to things that are out of
the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough,
technical topic doesn't have to be boring. Your brain will learn much more quickly if

Touch their emotions. We now know that your ability to remember

ber what

you care about. You remember when you feel something. No, we're not talking

like

surprise, curiosity, fun,“what the...?", and the feeling of “| Rule!” that comes when

ze you

know something that “'m more technical than thou” Bob from engineering doesn't.

the intro

Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more deeply,

T wonder how I
can trick my brain
info remembering

this stuff...

pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how to
build programs in C#. And you probably don’t want to spend a lot of time. If you
want to use what you read in this book, you need to remember what you read. And
for that, you’ve got to understand it. To get the most from this book, or any book or
learning experience, take responsibility for your brain. Your brain on #us content.

The trick is to get your brain to see the new material you're learning
as Really Important. Crucial to your well-being. As important as

a tiger. Otherwise, you're in for a constant battle, with your brain
doing its best to keep the new content from sticking.

So just how DO you get your brain to treat C# like
it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way.

The slow way is about sheer repetition. You obviously know that
you are able to learn and remember even the dullest of topics

if you keep pounding the same thing into your brain. With enough
repetition, your brain says, ““This doesn’t fee/ important to him, but he keeps looking
at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording;

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning,

you are here » XXXiii

how to use this book

Here’s what WE did: N

defies the layout of the house.

We used pictures, because your brain is tuned for visuals, not text. As far as your m
brain’s concerned, a picture really s worth a thousand words. And when text and

pictures work together, we embedded the text i the pictures because your brain

works more effectively when the text is within the thing the text refers to, as opposed m
to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types, ™" e N m
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain

is tuned to pay attention to the biochemistry of emotions. That which causes you to _feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used mudltiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, and someone else just

wants to see an example. But regardless of your own learning preference, everyone Q BULLET POINTS

benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you

engage, the more likely you are to learn and remember, and the longer you can stay focused.

Since working one side of the brain often means giving the other side a chance to rest, you

can be more productive at learning for a longer period of time. FlI‘ESldE Chats

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have

a straight answer, because your brain is tuned to learn and remember when it has to work at
something, Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the 7ght things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

XXXiV intro

Cut this out and stiek it

on Your refrigerator.

Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really s asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity «/z/elearning
can increase the learning.

Read the “There are No Dumb Questions”

That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Make this the last thing you read before

bed. Or at least the last challenging thing.

Part of the learning (especially the transfer to
long-term memory) happens g/ you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

the

Here’s what YOU can do to bend
your brain into submission

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

@ Talk about it. Out loud.

Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won'’t learn faster by trying to shove more in, and
you might even hurt the process.

Feel something.

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Write a lot of software!

There’s only one way to learn to program: writing
a lot of code. And that’s what you’re going to do
throughout this book. Coding is a skill, and the only
way to get good at it is to practice. We’re going to
give you a lot of practice: every chapter has exercises
that pose a problem for you to solve. Don’t just skip
over them—a lot of the learning happens when

you solve the exercises. We included a solution to
each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged on
something small.) But try to solve the problem before
you look at the solution. And definitely get it working
before you move on to the next part of the book.

XXXV

how to use this book

What you need for this book:

We wrote this book using Visual C# 2010 Express Edition, which uses C# 4.0 and .NET Framework 4.0. All of
the screenshots that you see throughout the book were taken from that edition, so we recommend that you use it.
If you’re using Visual Studio 2010 Professional, Premium, Ultimate or Test Professional editions, you'll see some
small differences, which we’ve pointed out wherever possible. You can download the Express Edition for free
from Microsoft’s website—it installs cleanly alongside other editions, as well as previous versions of Visual Studio.

— SETTING UP VISUAL STUDIO 2010 EXPRESS EDITION

= |t's easy enough to download and install Visual C# 2010 Express Edition. Here’s the link to the Visual Studio
2010 Express Edition download page:

http://www.microsoft.com/express/downloads/

You don’t need to check any of the options in the installer to get the code in this book to run, but feel free to if

you want.
| T Moo Vimsal €8 2018 Enpeess Setup — il ‘c
— e . l \/ou absolu{d muS‘f: use an
m"’:‘g‘;ﬂl C¥ 2010 older version O‘C\/Visual Studio,
e C# or the NET Framework,
s S e 200 e s ok | (24 b s 134 then please keep in mind that
B e sl i) Vo 8 5 v S et it you'“ tome alross {:oyids in this
book that won't be tompatible
with Your vevsion. The C# team
at Micvosoft has added some
pretty cool features 1o the
Ianguagc- ch? in mind that
if you've not using the latest
i ey version, theve will be some tode
— = in this book that won't work.

= Download the installation package for Visual C# 2010 Express Edition. Make sure you do a complete
installation. That should install everything that you need: the IDE (which you'll learn about),.NET Framework

4.0, and other tools.
= Once you've got it installed, you'll have a new Start menu option: Microsoft Visual C# 2010 Express Edition.
Click on it to bring up the IDE, and you're all set.

XXXVi intro

Read me

This 1s a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at
that point in the book. And the first time through, you need to begin at the beginning,
because the book makes assumptions about what you've already seen and learned.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the
book. Some of them are to help with memory, some for understanding, and some to
help you apply what you've learned. Don’t skip the written problems. The pool
puzzles are the only things you don’t have to do, but they’re good for giving your brain a
chance to think about twisty little logic puzzles.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books
don’t have retention and recall as a goal, but this book is about learning, so you’ll see
some of the same concepts come up more than once.

Do all the exercises!

The one big assumption that we made when we wrote this book is that you want to
learn how to program in C#. So we know you want to get your hands dirty right away,
and dig right into the code. We gave you a lot of opportunities to sharpen your skills

by putting exercises in every chapter. We’ve labeled some of them “Do this!”—when
you see that, it means that we’ll walk you through all of the steps to solve a particular
problem. But when you see the Exercise logo with the running shoes, then we’ve left
a big portion of the problem up to you to solve, and we gave you the solution that we
came up with. Don’t be afraid to peek at the solution—it’s not cheating! But you’ll
learn the most if you try to solve the problem first.

We’ve also placed all the exercise solutions’ source code on the web so you can download
it. You’ll find it at http://www.headfirstlabs.com/books/hfcsharp/

The “Brain Power” exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power exercises you will find hints to point you in the
right direction.

the intro

We use a lot of diagrams to
make tough tontepts easier

to uv\dc‘fS{la"d' Q

@)
ent @

VK "7/5

“gent

You should do ALL of the
“Sharpen Yyour pent

1 activities

Q&@r&p«l your pencil

Activities marked with the
Exertise (running shoe) loao
are veally im / ’

iy ,Z '10 Portant! Don’t

N)
1T You're serious

about lcarnins C#.

Exercise

1§ you see the Pool Puzzle loso,
the ac{ivi’c\/ is oy{iona\, -and 1
You don't like {‘,wis{:\/ \oglc, you
wor't like these either.

you are here » XXXVii

the review team

The technical review team
Lisa Kellner

We've esY€
Cheis's -‘,\s\\g \\c\;?}u\ feedoatk-

1 dievlovs

Not Fit:{:wed (but Jus{:
as awesome are the
veviewers from the first
jdi‘fjon)t Joe Albaha\ri,

. . ay Hilyard, Aayam
David S{:CYllhﬁ Singh, :/rhcodorcy, Peter
Ritehie,Bill Meitelski
And\/ Parkev, Wayne
B\radncy, Dave Murdoth,
Bridaette Julie Landers.
And special thanks
to Jon Skeet for his
Jcho\rough review and
suggestions for the fivst
cdi{:ion!

David vca“\/ hcl?ed us out,
especially with some very
neat IDE £rieks.

Technical Reviewers:

When we wrote this book, it had a bunch of mistakes, issues, problems, typos, and terrible arithmetic errors. OK, it
wasn’t quite that bad. But we’re still really grateful for the work that our technical reviewers did for the book. We
would have gone to press with errors (including one or two big ones) had it not been for the most kick-ass review team

EVER....

First of all, we really want to thank Chris Burrows and David Sterling for their enormous amount of technical
guidance. We also want to thank Lisa Kellner—this is our sixth book that she’s reviewed for us, and she made a huge
difference in the readability of the final product. Thanks, Lisa! And special thanks to Nick Paladino. Thanks!

Chris Burrows is a developer at Microsoft on the C# Compiler team who focused on design and implementation of
language features in C# 4.0, most notably dynamic.

David Sterling has worked on the Visual C# Compiler team for nearly 3 years.

Nicholas Paldino has been a Microsoft MVP for NET/C# since the discipline’s inception in the MVP program and has
over 13 years of experience in the programming industry, specifically targeting Microsoft technologies.

XXXViii intro

Acknowledgments

Our editor:

We want to thank our editors, Brett McLaughlin and
Courtney Nash, for editing this book. Brett helped with a lot of

the narrative, and the comic idea in Chapter 14 was completely his,
and we think it turned out really well. Thanks!

The O’Reilly team:

i

Sanders Kleinfeld

/—>

Brett MCLaughlin

<

Cowr‘{:nc\/ Nash

Lou Barr is an amazing graphic designer who went above and beyond

on this one, putting in unbelievable hours and coming up with some pretty
amazing visuals. If you see anything in this book that looks fantastic, you can
thank her (and her mad InDesign skillz) for it. She did all of the monster and
alien graphics for the labs, and the entire comic book. Thanks so much, Lou!
You are our hero, and you’re awesome to work with.

There are so many people at O’Reilly we want to thank that we hope we
don’t forget anyone. Special thanks to production editor Rachel Monaghan,
indexer Lucie Haskins, Emily Quill for her sharp proofread, Ron
Bilodeau for volunteering his time and preflighting expertise, and Sanders
Kleinfeld for offering one last sanity check—all of whom helped get this
book from production to press in record time. And as always, we love Mary
Treseler, and can’t wait to work with her again! And a big shout out to our
other friends and editors, Andy Oram and Mike Hendrickson. And if
you’re reading this book right now, then you can thank the greatest publicity
team in the industry: Marsee Henon, Sara Peyton, Mary Rotman,
Jessica Boyd, Kathryn Barrett, and the rest of the folks at Sebastopol.

you are here »

the intro

XXXiX

safari

Safari® Books Online

S a f a rl Safari Books Online is an on-demand digital library that lets you easily search over 7,500

. technology and creative reference books and videos to find the answers you need quickly.
Books Online

With a subscription, you can read any page and watch any video from our library online. Read books on your cell
phone and mobile devices. Access new titles before they are available for print, and get exclusive access to manuscripts
in development and post feedback for the authors. Copy and paste code samples, organize your favorites, download
chapters, bookmark key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital access
to this book and others on similar topics from O’Reilly and other publishers, sign up for free at
hitp://my.safaribooksonline.com/?portal=oreilly.

x|

1 get pmducti\/e With c#

Visual Applications, in 10
minutes or less

Don't worry, Mother. With Visual

Studio and C#, you'll be able to

program so fast that you'll never
burn the pot roast again.

Want to build great programs really fast?
With C#, you’ve got a powerful programming language and a valuable tool

at your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you'll be able
to focus on getting your work done, rather than remembering which method
parameter was for the name of a button, and which one was for its /abel. Sound

appealing? Turn the page, and let’s get programming.

this is a new chapter 1

c# makes it easy

#
Why yﬂy ShOUId lear" c 47 The [DE—or Visual Studio Integrated

Development Environment—is an
im?ov-'(‘,an{: yarf of wo\rking in C#. [+'s
a program that thEs you edit your
tode, manage Yyour iles, and publish Your
projeets.

C# and the Visual Studio IDE make it easy for you to get to the business
of writing code, and writing it fast. When you’re working with C#, the
IDE is your best friend and constant companion.

Here’s what the IDE automates for you...

Every time you want to get started writing a program, or
Jjust putting a button on a form, your program needs a
whole bunch of repetitive code.

Private voi itiali
; d InltlallzeComponent()

this.button] -
: = new 3 .
/t?ls -SuspendLayout () gscem'WI“dOW&Forms.Eutcon 0

// butt
77 uttonl

ﬁt/u‘s.buttonl,cucgsffli;ylgBaéchmr = true:
= new System.EventHandye
ler (this.butt
. onl_Click);

i system.CO e
‘\J;Zi?ug Sgstem.W1ndows.Forms,
namespace A’New#Program

// F 1
// orm.

this.Autoscalepi

N eDim i
thls.AutoScale cnet
this.Clientsgi,

Oons = new System.Drawing

Program Mo, X
ode = System.Window. -SizeF (8F, 16F) ;

S. Forms.AutoScaleMode -Font;

static class

{ > lication. thi € = new Syst. ;
/ <summary + for the app 1s.Controls, Y System.Drawing,gi
///// The main entry poin this Name = ‘?F?Srgl(sk_lls.buttonl); 9-Size (292, 267)
this.Text = Forml M

/| </summary>

sTAThread] .
étatic void Main(

les ()7 ;
i§i§z§gxtRenderingDefault(false
Forml ()7

on.EnableVi
n.SetCompa
n.Run (new

applicati
Agplicat%o
Applicatlo

=<
I takes all £his tode just 4o dray,

a button Th a form. Adding a few
more visual elements 4o the £
tould take I_(_) ﬁ&as much :::;e.

What you get with Visual Studio and C*...

With a language like C#, tuned for Windows
programming, and the Visual Studio IDE, you can focus
on what your program is supposed to do immediately:

’Thc. result is 3 better
ookm3 aFPlicafion thaﬁ

takes ss T
/\ \KC 'C ‘é'me{:"WVifc,

7] -
bl
us! Your Program = =

o> NET Framework
Fore " solutions

K —— Input | e get staded]
o e NET Farenst (T
and, the Visual Studio IDE How good? () Good () Better @) Best

have Yrc—bu\\{: sbruttures e

fhat handle the tedious
\/ T e

tode that’s part ot mos

programming Tas .

Data access

2 Chapter 1

get

C# and the Visval Studio IPDE make
lots of things easy

When you use C# and Visual Studio, you get all of
these great features, without having to do any extra
work. Together, they let you:

0 Build an application, FAST. Crcating programs in C# is a snap. The
language 1s powerful and easy to learn, and the Visual Studio IDE does a lot
of work for you automatically. You can leave mundane coding tasks to the IDE
and focus on what your code should accomplish.

Q Design a great looking user interface. The Form Designer in the
Visual Studio IDE is one of the easiest design tools to use out there. It
does so much for you that you’ll find that making stunning user interfaces
is one of the most satisfying parts of developing a C# application. You can
build full-featured professional programs without having to spend hours
writing a graphical user interface entirely from scratch.

6 Create and interact with databases. The IDE includes an easy-to-use
interface for building databases, and integrates seamlessly with SQL Server
Compact Edition and many other popular database systems.

Q Focus on solving your REAL problems. The IDE does a lot for you, but
gyou are still in control of what you build with C#. The IDE just lets you focus on
your program, your work (or fun!), and your customers. But the IDE handles all the
grunt work, such as:

* Keeping track of all your projects
* Making it easy to edit your project’s code
* Keeping track of your project’s graphics, audio, icons, and other resources
* Managing and interacting with databases
All this means you’ll have all the time you would’ve spent doing this routine

programming to put into building killer programs.

'\ You've going to see exattly

what we mean next.

with c#

the boss needs your help

Help the CEQ go paperless

The Objectville Paper Company just hired a new CEO. He loves hiking,
coffee, and nature...and he’s decided that to help save forests, he wants
to become a paperless executive, starting with his contacts. He’s heading
to Aspen to go skiing for the weekend, and expects a new address book
program by the time he gets back. Otherwise...well...it won’t be just the
old CEO who’s looking for a job.

- \/ou d better ‘cmd 3 way
i to 56{: his data onto the

: Lave i
Name: me Smith Pacer comgany CEO s la‘;b‘) '\ulﬁk

Company: XYZ \ndustries

Telephone: (313)sss-8139
Email: La\/eme.sm\th@xBEindus{r&eSQOm

Client: ves Last call: 05/a6/07

4 Chapter 1

)

get productive with c#

Get to know your users’ needs before
you start building your program

Before we can start writing the address book application—or any
application—we need to take a minute and think about who’s going to
be using it, and what they need from the application.

@ The CEO needs to be able to run his address book program
at work and on his laptop, too. He’ll need an installer to
make sure that all of the right files get onto each machine.

The CEO wants to be able o vun his

L/ Program on his desktop and laptop, so
. an installer is a must.

Think about your
users and their

neer l)e{ore you

start building the

9
@ The Objectville Paper Company sales team wants to COJe’ al'l(I tlley u
access his address book, too. They can use his data to .
build mailing lists and get client leads for more paper l)e haPPy Wltll tlle
sales.

final ProJuct once
The CEO figures a database would be the best way for

9
everyone in the company to see his data, and then he you re (IOﬂe!

can just keep up with one copy of all his contacts.

makes working W
easy- Having &

base \e
i?\tasa\scs Leam all access the

information, ever Ehough ’c\\cvu

oy\\l one 60\7\’ o‘c ‘H’\C da‘ha

you are here » 5

here’s your goal

Heres what youte going to build

You're going to need an application with a graphical user
interface, objects to talk to a database, the database itself, and
an installer. It sounds like a lot of work, but you’ll build all of
this over the next few pages.

Here’s the structure of the program we’re going to create:

ith 3 that ; ¢ Y
. W\ dO‘NS AQOYW\ W n cy-ac,és ;
‘(ou’\\ e building 2 s on 't he da‘(:abase it
of visuad! tontrol
bunth & l SELECT command ‘
NET Visual Objects NET Database | INsERT °°mmand_]
Objects | uPDATE command |

l DELETE command)

7

\,?Jlbjed

P
Bind®

r object

!

-
R
Tab\ep’é

Oato,. object

’5.\\
Bindind®™
ey
(6]
Database S
diagra™ >

Eath of these objects / 3T
vepresents 3 tontrol 2y
on the addvess book \ 7 :
form we'll ereate. We'll need obJCC'(:s to talk 4o

our .'Eablcs, a diagram to |et our
apphda{:ion know what the da’cabasc

structure |
6 Chapter 1 €15, and move.

get productive with c#

The data | .
s S‘QZ? is al| S'EOV'Cd ina fab,c in Once ‘{‘)\C yvogram's bui‘{',;
erver Compact database. £l be packaged up into 3
\} Windows ins{a“"Z
Pata Storage Peployment Package
Table

Stored
Procedures

Program
file

T'\C Sa’CS
‘dePa‘”f'"Chf will
Just need &,
Point and ¢liek
to instgl| and

hen use his

Da

<

Heve's the database itself, whieh ‘
Visual Studio will help us create
and maintain.

you are here » 7

let’s get started

What you do in Visval Studio...

Go ahead and start up Visual Studio, if you haven’t already. Skip over the start page and select New Project from
the File menu. Name your project “Contacts” and click OK. There are several project types to choose from.
Select Windows Forms Application and choose “Contacts” as the name for your new project.

| M Pt 5 g
EETET Sort by Gt =10y [b o i]
Iratallaet Tarspestas — e T T e
e atf| Wesbows Fmrm Appluscan Wasarl 08

E Chaex Libeury Vasal £F Things may
T et syl look a bit
o ot e Sonbots i WafC}l lf' different in
£ o) your IDE.
m Canuhe hpglc stce Wyl OO
"l ot Peject ocsd This is what the “New
. Project” window looks

What Visual Studio does for you...

As soon as you save the project, the IDE creates Forml . cs, Forml.
Designer.cs, and Program. cs file, when you create a new project. It
adds these to the Solution Explorer window, and by default, puts those files in
My Documents\Visual Studio 2010\Projects\Contacts\.

8

This has the tode
that stavts uf
the Y“°?)“a"‘ and
d\s\>\a\/s the form.

B

Program cs

This file contains the C#
tode that defines the
behavior of the form.

W

c#

Form1.cs

like in Visual Studio 2010
Express Edition. If you’re
using the Professional or
Team Foundation edition, it
might be a bit different. But
don’t worry, everything still
works exactly the same.

Make sure that you save your project
as soon as You eveate it by selecting
“Save All” £rom the File menu—that |l
save all of the project files out o
the folder. |£ You sclcc'E ‘Save”, it

Jus-{; saves the one \/ou re wo\rkmg on.

The tode ‘l:ha‘(:
defines the Lorm
ahd I'l’,S obJCC‘l:S

lives hcrc/
i C#]

Form1.Designer.cs

\ Visual S{udw eveates all three of i

these files automatically.
Chapter 1

get productive with c#

rpen your penc

Below is what your screen probably looks like right now. You should be able to figure out the
purpose of most of these windows and files based on what you already know. Make sure you open
the Toolbox and Error List windows by choosing them from the View >> Other Windows menu.
Then in each of the blanks, try and fill in an annotation saying what that part of the IDE does. We've
done one to get you started.

I'T‘?S.fl;qglbgr' has butbons la.c your [DE doesn't look exactly like this We've blown up this
that 3PPly fo what)'owc ymfwc,,\/ou ean seleet “Reset Window window below so You
CuW'CIn‘l:,y doma'"ﬂ’\ell)E La‘/ou{: £rom the Window menu. \l have move voom.
e e T — i e)
O EPTTE |
AR T e ¥ R] ol
To | e—

R

i PPENE

e

E ok

=2 o faa

3-)

e 1€ you don't see the

B o Evvor List or Toolbox,

T thoose them from View))
Y e s> Other Windows. /| o w0 [et
AL I — AR e |
: ":w & :n.rn: e A Y ve mwm | NN et

N - /S =T YT e

o bt o] B

Solution Explorer

Bals
............................. m Solution 'Contacts' (1 project)
............................... 4 & Contacts
............................ > [Properties
.................... P References

5] Forml.cs
] Program.cs

K

you are here » =~ 9

know your ide

NIl

This toolbgy has buttons

that aFP'Y to wh at \/ou'\rc

We've filled in the annotations about the different sections of the Visual

Studio C# IDE. You may have some different things written down, but you
should have been able to figure out the basics of what each window and

section of the IDE is used for.

«:w\ren{:ly doing in the IDE.

e ks i LB L g
e L e Bt

-
T
§

]]
in
i

1
. =

LF T

This is the 3 e
toolbox. [t e
has a bunth of 5 —
visual tontrols 8 o

that you tan e
drag onto your || = ..‘.L‘_

form.

This Evvor List window shows
ou when theve are evvors

This pane will show
bout

owr tode.
lots 0‘(: diagnos{:ic 'm(:o)
\Iow Yrog\ram.

The Form/ ts g
| €s and Progrg,,
Files that the IDE c:a'(::da

oF You when You added £,
hew projeet IPPear in {he
Solution Exploer.

10 Chapter 1

Solution Explorer

|2 E B
|; Solution ‘Contacts' (1 project)
4 [Contacts

> [=d| Properties
» [+3] References
=
>%.] Forml.cs

#] Program.cs

<N

This window shows
Vrovcr{:ics of the
contol cuevently
selected on Your

‘FOY'"F

See this little
pushpin icon?

If you click it,
you can turn
auto-hide on or
off. The Toolbox
window has
auto-hide turned
on by defaulit.

%;u Can switeh between
iles using the Solution

Explorer in the DE,

Q: So if the IDE writes all this code
for me, is learning C# just a matter of
learning how to use the IDE?

A: No. The IDE is great at automatically
generating some code for you, but it can
only do so much. There are some things it's
really good at, like setting up good starting
points for you, and automatically changing
properties of controls on your forms. But
the hard part of programming—figuring out
what your program needs to do and making
it do it—is something that no IDE can do
for you. Even though the Visual Studio IDE
is one of the most advanced development
environments out there, it can only go so far.
It's you—not the IDE—who writes the code
that actually does the work.

Q; | created a new project in Visual
Studio, but when | went into the “Projects”
folder under My Documents, | didn’t see it
there. What gives?

- When you first create a new project in
Visual Studio 2010 Express, the IDE creates
the project in your Local Settings\
Application Data\Temporary
Projects folder. When you save the
project for the first time, it will prompt you
for a new filename, and save it in the My
Documents\Visual Studio
2010\Projects folder. If you try to
open a new project or close the temporary
one, you'll be prompted to either save or
discard the temporary project. (NOTE: The
other, non-Express versions of Visual Studio
do not use a temporary projects folder. They
create the project directly in Projects!)

Q: What if the IDE creates code I don’t
want in my project?

A: You can change it. The IDE is set up to
create code based on the way the element
you dragged or added is most commonly

therejare no
Dumb Questions

used. But sometimes that's not exactly what
you wanted. Everything the IDE does for
you—every line of code it creates, every file
it adds—can be changed, either manually by
editing the files directly or through an easy-
to-use interface in the IDE.

Q; Is it OK that | downloaded and
installed Visual Studio Express? Or do

| need to use one of the versions of
Visual Studio that isn’t free in order to do
everything in this book?

- There’s nothing in this book that you
can’t do with the free version of Visual Studio
(which you can download from Microsoft's
website). The main differences between
Express and the other editions (Professional
and Team Foundation) aren’t going to get
in the way of writing C# and creating fully
functional, complete applications.

Q: Can | change the names of the files
the IDE generates for me?

- Absolutely. When you create a new
project, the IDE gives you a default form called
Forml (which has files called Forml . cs,
Forml.Designer.cs,and Forml.
resx). But you can use the Solution
Explorer to change the names of the files to
whatever you want. By default, the names of
the files are the same as the name of the form.
If you change the names of the files, you'll
be able to see in the Properties window that
the form will still be called Form1. You can
change the name of the form by changing the

“(Name)” line in the Properties window. If you

do, the filenames won't change.

C# doesn't care what names you choose for
your files or your forms (or any other part of
the program), although there are a few rules
for this. But if you choose good names, it
makes your programs easier to work with.
For now, don’t worry about names—we'll talk
a lot more about how to choose good names
for parts of your program later on.

get with c#

Q- I’'m looking at the IDE right now,
but my screen doesn’t look like yours! It’s
missing some of the windows, and others
are in the wrong place. What gives?

A: If you click on the “Reset Window
Layout” command under the “Window” menu,
the IDE will restore the default window layout
for you. Then you can use the “View >>
Other Windows” menu to make your screen
look just like the ones in this chapter.

Visual Studio will

generate code
you can use as a
starting point for
your applications.

Malcing sure

the a])])lication
does what it's
supposeJ to do
15 entirely up to

you.

11

a picturebox is worth a thousand words

Pevelop the user interface

Adding controls and polishing the user interface is as easy as
dragging and dropping with the Visual Studio IDE. Let’s add a
logo to the form:

e Use the PictureBox control to add a picture.
Click on the PictureBox control in the Toolbox, and drag it
onto your form. In the background, the IDE added code to
Forml.Designer.cs for a new picture control.

If you don’t see

the tOOIbOX! try Forml.cs [Designl® =
hovering over the Al Wendows Forms -
word “Toolbox” a Common Controby f* 7]
that shows up R Pointer L [ES= ECR =5
in the upper (%] Bulton
left-hand corner Chieckibox _
of the IDE. If it's £5 CheckedListBax ; ri«&l
not there, select B CombuBun
“Toolbox” from "". DateTimeficker
the View menu to A Labe 3
make it appear. A LinkLabel
85 Lastihor |
1" ListView 1 -
5. MobedTedBo
-:' Maonthl aléndar
=, Hntifyicon
k| \ NL\‘I‘\!"IL[IF![%TI o 1
A Picturefox —
= /'t-\g\t;\&\r\
& Raliollz\te\
‘..-4 RichTextBox
il TetBox

Evcry fime You make
: a thange 10 3 ¢ '
properties on the form, the 9«:odc in 7;:::7.' :

esigner-¢s is 9etting ¢hanged by the DE.

g It’s OK if you’re not a pro at user
cH 1 interface design.
: R‘e ax We’ll talk a lot more about designing

good user interfaces later on. For now,

Form1.Designer.cs just get the logo and other controls on your form, and

i worry about behavior. We’ll add some style later.

12 Chapter 1

Select Resources window pop up. Click the “Local Resource” radio button to enable t

get productive with c#

.NET Visual NET Data Storage Deployment
Objects Patabase> Package
Objects - .
ot are Here —»@g - = A
V-9 0@ | & |DVO
éﬁ — V‘:[/ 1 i) L ,.
e Set the PictureBox to Zoom mode. % el ‘
Every control on your form has properties that you can
set. Click the little black arrow for a control to access
these properties. Change.the PictureBox’s Size property ¢ on Lhis little
to “Zoom” to see how this works: C\\¢k° to attess
r y \a(‘ arvrow :
i Form1 |i| ELH—W \; Loh{-’ro\’s Y\,o\,c\o{:\cs.
he l
You tan also use the. st (T :
“P\'O\’cv{jes" window in % > Om Tasks
the lDE 1o set the o Cheooze Image...
S property. The e — 7
. ek arvow is ; Marmal
!d:{:\c bla b make Dock in Par Sretchliige
\)us{: there to m Auluice
it easy 4o ateess | Lenterdmage
the most tommon
\vro\?cr{:\cs of any
control. ’\ Choos,
¢ ZOOM
f‘;le PictureBg, f7 thet
.' Chahae £ ma&hmc
S:?.of 'éhe pie '(:ure ﬂic
Then eliek “Choose Imagc" & bri Put in it You
the Select Resource dialog box s':ﬂ :E /
tan |MPOV“£ a 'Ol,a, vesource. Y
9 Download the Objectville Paper Company logo.
Download the Objectville Paper Co. logo from Head First Labs (http://
www.headfirstlabs.com/books/hfcsharp) and save it to your hard drive.
Then click the PictureBox properties arrow, and select Choose Image. You’ll see a
he

“Import...” button at the top of the form. Click that button, find your logo, and you’re all set.

.il . - T 7-||
Forml \ I |E/| o Heed's the OPC \ogos
: and the PictueeDox
. | /l 200ms o 9et the stz
— Popes enmpany _ R \')\AS{'« Y\S\,\{;.

you are here » 13

conserving c#’s natural resources

Visval Studio, behind the scenes

Every time you do something in the Visual Studio IDE, the IDE is
writing code for you. When you created the logo and told Visual

Studio to use the image you downloaded, Visual Studio created a resource

and associated it with your application. A resource is any graphics file,
audio file, icon, or other kind of data file that gets bundled with your
application. The graphics file gets integrated into the program, so that

when it’s installed on another computer, the graphic is installed along with

it and the PictureBox can use it.

When you dragged the PictureBox control onto your form, the IDE
automatically created a resource file called Forml . resx to store that
resource and keep it in the project. Double-click on this file, and you’ll be
able to see the newly imported image.

Solution Explorer

|2 2]
,; Selution 'Contacts' (1 project]
4 [Contacts
=d| Properties
= References
5] Forml.cs
% Forml.Designer.cs

to Forml.cs to

to “Strings”

]
]

F]

Forml.resx =

|3 Images = |_] Add Resource =

This image is now @ vesource of the
Contact List awllca{:non

Go to the Solution Explorer and click on the “expand” icon next

expand it (if it’s not already expanded). This

will display two files: Forml.Designer.cs and Forml.
resx. Double-click on Forml . resx, click on the arrow next

, and select “Images” from the drop-down list (or hit
Ctrl-2) to see the logo that you imported. That file is what links it
to the PictureBox, and the IDE added code to do the linking.

l(: ou those the other
“lm ov'{‘, bu{:{:on ‘Fvom
H\c Seleet Resource
dialog on the last page,

Formil.cs [Design]

%’g‘] Forml.res: s

#] Program.cs
Form1.Designer.cs

@

Form1.cs

[

c#

\teve ave the fles
V\sua\ Sb'd‘o —

eeeated eavlier:

Program.cs

14 Chapter 1

Form1.resx

then Your image will
show up in the Resourees
folder in the Solution
Explorer instead. Don't
wo‘rv\/——'us{: 90 back to
Seleet Resourtes, thoose
“Lotal Resourte,” and
rclm\?o\r{‘, ‘U\c |m85€ m{',o
the vesourtes, and it'll
show up here.

Q-

When you mFor‘{:cd the image, the
IDE eveated this file for You.

H‘, Lon{:ams all 0‘(" '{:hc resourtes
(gy-aph-cs, video, audio and other
stored data) assotiated with Forml.

&

get productive with c#

Add to the auto-generated code

The IDE creates lots of code for you, but you'll still want to get
into this code and add to it. Let’s set the logo up to show an About
message when the users run the program and click on the logo.

When you’re editing a form in the IDE, double-clicking on any of
the toolbox controls causes the IDE to automatically add code to
your project. Make sure you’ve got the form showing in the IDE,
and then double-click on the PictureBox control. The IDE will
add code to your project that gets run any time a user clicks on the
PictureBox. You should see some code pop up that looks like this:

public partial class Forml : Form

{
public Forml () When You double—tlicked on the Pid‘[:cho% Con‘[‘,vo|,
{ the IDE eveated this method. [t will vun every time

a usev ¢licks on the logo in the vunning application.
InitializeComponent () ;

This method name g'wcs You a

9ood idea about when i&: \:‘\msi
e | :

S on
private void pictureBoxl Click(object sender, EventArgs e) “hen someone cliek

K_/ Pic{:cho% tontyol.
{

MessageBox.Show (“Contact List 1.0.\nWritten by: Your Name”, “About”) ;

})

Type in this line of tode.

}

ox to . It Causes g

: PoP up with ¢ message &

When You double—¢lick on the b . I g he text o _ , . -

PicinBox, it will open this o% will be titleq About”. You Provide. The Once You've b/y{cd in %;:2; .

tode up with a tursor blinking o{l tode, savlc D|E \z;:?bav -

:‘?HTSEM i wz'd°ws t\;hsc‘l’:ct:‘ncg “Save” from the
e pops up as \/ou \/Pc,' . ! _

it's trying to help you, but we ‘F,l.c mer 66{;‘::“ {-,hclah:b'l{, of

don't need that vight now. doing “Save All” vequlavly.

there are no °
Dumb Questions

Q,: What's a method? Q} What does that \n thing do?

. Amethod is just a named block of code. . That's a line break. It tells C# to put
We'll talk a lot more about methods in Chapter 2. “Contact List 1.0.” on one line, and then start a
new line for “Written by:”.

you are here » 15

run the app (already!)

You can already run your application

Press the F5 key on your keyboard, or click the green
arrow button (|) on the toolbar to check out what you’ve
done so far. (This is called “debugging,” which just means
running your program using the IDE.) You can stop
debugging by selecting “Stop Debugging” from the Debug
menu or clicking this toolbar button: [.

[about ot e

Contact Lnt 1.0
Wiitten by: Your Name

Where are wmy files?

C# ‘{',IAYV\S YOVV‘
program into a
file that You an

2010\Projects\Contacts\Contacts\ vun, ¢alled an
rojectsiontactsibontarts exetutable. \Vou'll

bin\debug. You can even hop over to that
directory and run your program by double-clicking the dcbug folder

l

When you run your program, Visual Studio copies
your files to My Documents\Visual Studio

find it in here, in

on the .exe file the IDE creates.

Program.cs CH# Form1. c# Contacts.csproj .

Designer.cs
Form1.cs Form1.resx

Properties

This isn't a mistake; there are two levels of folders. The innev
folder has the actual CH# code Liles.

16 Chapter 1

Al three of Lthese

U'l: ns woy-k__ahd ou

didn’t have 4, write any

a2 Farml — | = 4— Code {',O make fhc”‘ work.

Clicking on the
OPC logo brings wp
the About box you
\')us{: toded.

therejare no
— Dumb Questions —

Q/: In my IDE, the green arrow is marked as
“Debug.” Is that a problem?

A- No. Debugging, at least for our purposes
right now, just means running your application
inside the IDE. We'll talk a lot more about
debugging later, but for now, you can simply think
about it as a way to run your program.

Q: | don’t see the Stop Debugging button
on my toolbar. What gives?

- The Stop Debugging button shows up in a
special toolbar that only shows up when your
program is running. Try starting the application
again, and see if it appears.

Heres what weVve done so far

get productive with c#

We’ve built a form and created a PictureBox object that pops up a
message box when it’s clicked on. Next, we need to add all the other

fields from the card, like the contact’s name and phone number.

Let’s store that information in a database. Visual Studio can connect
fields directly to that database for us, which means we don’t have to
mess with lots of database access code (which is good). But for that

to work, we need to create our database so that the controls on the
form can hook up to it. So we’re going to jump from the .NET Visual

Objects straight to the Data Storage section.

NET Visval
Objects

Object

F

«O

&
o
System -\N‘“d
data et

< Pictureed’.

Here’s what we've
a"'cad)’ done...

Object

Tooe?

Oé .
\) Ject

etts o in evatt

in ouwr database.

O@eCtS

out we still need some

ifi\\ fhe data well put

NET Data Storage Peployment
Patabase==— Package
Objects

So we need to fotus
on {‘_)\"l_s step next:
ereating our database,
and ?u{',{',ing some
imtial data into it

This s{:cF is about
conhct‘l‘,ihg our -(:o\rm
ﬁolfhc database, so
we e not ready for
it yet, sinte we don't
have a database.

Visual Studio can generate code to connect your
form to a Jatal)ase, but you need to have the

database in place BEFOEE generating that code.

you are here »

17

save it for later

We need a database to store our information

Before we add the rest of the fields to the form, we need
to create a database to hook the form up to. The IDE
can create lots of the code for connecting our form to
our data, but we need to define the database itself first.

Make Sure)’ou ve

;Pcd dcbus ms
O

re You tontinye.

0 Add a new SQL database to your project.
In the Solution Explorer, right-click the Contacts project,

is Lile is owe —m>
select Add, and then choose New Item. Choose the SQL This ﬁ;{;‘basc- SQL
Database icon, and name it ContactDB.sdf. new
ContactDB.sdf
A L B ket r——r
L |t o | Cotoma] I:
Choose Local - _M _ "_: et "t’:’.:.“' A Lotal Database is
Database i _ 3 LJwa“\l 2 SQL Server
to create a ; J H : 2 Compatt Edition
S E e dadhe e
Edition file, =-i_] £ {:\Iv‘wn\’ MBF cllc gives
which will hold &) o - extension S s
your entire e s e au an €3 W\:I nto
database. i g ewbed a database
Name your file your program:
ContactDB.sdf.

Q Click on the Add button in the Add New Item
window.

If you’re not using
the Express edition,

[]
. .
you’ll see “Server

Watch it! Explorer” instead of
“Database Explorer.”

The Visual Studio 2010 Professional
and Team Foundation editions don’t

6 Cancel the Data Source Configuration Wizard.
For now, we want to skip configuring a-data source, so
click the Cancel button. We’ll come back to this once
we’ve set up our database structure.

e View your database in the Solution Explorer.

18

Go to the Solution Explorer, and you’ll see that
ContactDB has been added to the file list. Double-click
ContactDB.sdf in the Solution Explorer and look at the
left side of your screen. The Toolbox has changed to a
Database Explorer.

Chapter 1

have a Database Explorer window.
Instead, they have a Server Explorer
window, which does everything the
Database Explorer does, but also lets
you explore data on your network.

get productive with c#

NET Visval NET Data Storage Deployment
The IDE created a database Ohts Batabas Pakage
When you told the IDE to add a new SQL database to I~ 4 N /
your project, the IDE created a new database for you. A l \ 4 S
SQL database is a system that stores data for you in an y Q1 < @
organized, interrelated way. The IDE gives you all the =
tools you need to maintain your data and databases.
Data in a SQL database lives in tables. For now, you T
can think of a table like a spreadsheet. It organizes your ot e Here
information into columns and rows. The columns are the
data categories, like a contact’s name and phone number,
and each row is the data for one contact card.
A SQL da“:abasc S‘EQYCS YOUY'
da"l:a‘; ’ahd has in«coy-ma{-{ion abou{:
how it’s struetured and SQL
tode to help you aceess it.
Your data’s stored in 3
R an
table with columns Tables
o, ke in 3 spreadehect Proceduge
S

C/f\!\

SQl is its own language

SQL stands for Structured Query Language.
It’s a programming language for accessing data in
databases. It’s got its own syntax, keywords, and
structure. SQL code takes the form of statements
and queries, which access and retrieve the data.
A SQL database can hold stored procedures,
which are a bunch of SQL statements and queries
that are stored in the database and can be run at
any time. The IDE generates SQL statements and
stored procedures for you automatically to let your
program access the data in the database.

N=—— [note from marketing: Can we get a plug
Lor Head First SQL in here?]

ContactDB.sdf

.p\

The SQL database is in this Lile.
We've jus{ about to dc‘cinc tables
and data for it, and all of that
will be stored in here too.

you are here » 19

data storage made easy

Creating the table for the Contact List

We have a database, and now we need to store information
in it. But our information actually has to go into a table,
the data structure that databases use to hold individual bits
of data. For our application, let’s create a table called
“People” to store all the contact information:

o

Add a table to the ContactDB database.
Right-click on Tables in the Database Explorer, and select
Create Table. This will open up a window where you can
define the columns in the table you just created.

Database Explorer * Il ¥
el =] T
4 [JJ Data Connections
4 |l ContactDB.sdf
" Tahles
g R Create Table

MNew Querny
Refresh

=1 Properties ARlt+Enter

Now we need to add columns to our table. First, let’s add a
column called ContactID to our new People table, so that
each Contact record has its own unique ID.

2]

Add a ContactID column to the People table.
Type “ContactID” in the Column Name field, and
select Int from the Data Type drop-down box. Be sure
to select “No” for Allow Nulls.

Finally, let’s make this the primary key of our table.
Highlight the ContactID column you just created, and
click the Primary Key button. This tells the database
that each entry will have a unique primary key entry.

Colismn Name Data Type

n

Lengeh~ " Allew Mulls Unigue Primany KFy

He

CrntactiD Yes Yes
e

“nt”. Make sure to
“ch,'

AN
tolumn called “Contact|D” with data {‘,\/Yc
Yes, and Primary Key to

Add a new ¢
set “A"ow Nu“s” +o0 No, “Mnlv\uc to

20 Chapter 1

therejare no
Dumb Questions

Q: What'’s a column again?

A- A column is one field of a table. Soin a
People table, you might have a FirstName and
LastName column. It will always have a data
type, too, like String or Date or Bool.

Q: Why do we need this ContactID
column?

A: It helps to have a unique ID for each
record in most database tables. Since we're
storing contact information for individual
people, we decided to create a column for that,
and call it ContactID.

Q: What's that Int from Data Type mean?

A: The data type tells the database what
type of information to expect for a column.

Int stands for integer, which is just a whole

number. So the ContactlD column will have
whole numbers in it.

Qj This is a lot of stuff. Should | be
getting all of this?

- No, it's OK if you don’t understand
everything right now. Your goal right now
should be to start to get familiar with the basics
of using the Visual Studio IDE to lay out your
form and run your program. (If you're dying to
know more about databases, you can always
pick up Head First SQL.)

get productive with c#

.NET Visval

Pata Storage
Objects

e Tell the database to autogenerate IDs. y @1
Since ContactID is a number for the database, and not R
our users, we can tell our database to handle creating and
assigning IDs for us automatically. That way, we don’t have
to worry about writing any code to do this.

In the properties below your table, set Identity to “True” to
make ContactID an identity column for your table.

And make sure you specify the table name “People” in the
Name box at the top of the window.

This window is what you use
b|sd:(:|'lnc our {‘,ab\c and
the data it will store.

Deployment
Package

=7 1t Tabla - Prople i
(5 _ A Retreh [T Heip A primary kc\/ hcl?s
A Genanl
Hare Frope : your database look
S Mo DusType Loih Alows bty Doieue Pormaey Kay up vetords quickly.
[Comtecan | it PR ves Yo Sinte the primary

Detrett vabhn

e >
Efeniity Increment

- = :

Mrgseft SO bereay Compat

ContsctDF.of

kCY is the main way
your program will
lotate vetords, it
always needs to
have a value.

This will make

it so that the
Contaet[D
‘Ficld updates
You'll need to tlick on the vight tolumn an 3:2:7{":3”7
select “True” from the drop—down next to hene e a new
Idcv\{:ﬂ:\/ to dcsigna‘{zc ContactID as Your is added.

Lable's vecord |dentifier.

you are here » 21

let’s table this discussion

The blanks on the contact card
are columns in our People table

Now that you’ve created a primary key for the table, you need
to define all of the fields you’re going to track in the database.
Each field on our written contact card should become a
column in the People table.

Name: Laverne Smith Pace comaan
Company: XYZ \ndustries

Telephone: (313)ss5-8129
Email: La\/eme.Sm'\Jch@XBZ'\ndus{r'\e&com

Client: ves Last call: 0S/a6/07

For eath Person, we want {o store data:

:;; name, c‘,o':nFan\/, Phone number, email
vess, it she’s an OPC tlient, and th

date of the last time she was calTed.)

@RA\N

PQWEWR
What kinds of problems could result from having
multiple rows stored for the same person?

22 Chapter 1

get productive with c#

e S

+
WHOQ DQES WHAT™?

Now that you’ve created a People table and a primary key column, you need to add columns for all of the data

fields. See 1f you can work out which data type goes with each of the columns in your table, and also match the
data type to the right description.

Column Name Data Type Description
Last Call This type stores a date
and time
int
Name A Boolean true/false type

bit

ContactID A string of letters,
numbers, and other
nvarcl‘ar(]ﬂﬂ) characters with a
maximum length of 100

Client?

) A whole number
datetime

you are here » 23

it’s just my type

+ O

- e +
WHOQ DQES wHaT™?

Now that you've created a People table and a primary key column, you need to add columns for all of the data
fields. See if you can work out which data type goes with each of the columns in your table, and also match the
data type to the right description.

Column Name Data Type Description

Last Call This type stores a date

and time

Name A Boolean true/false type

ContactID A string of letters,
numbers, and other
nvarclnar(!ﬂﬂ)" characters with a

maximum length of 100

A whole number

24 Chapter 1

get productive with c#

s s . . NET Visval NET Data Storage Deployment
Finish building the table Ojecs Tatabase Packags
bjects
e |
Go back to where you entered the ContactID column 4 ‘\\vﬁ
and add the other five columns from the contact card. l \ e
Here’s what your database table should look like y O L
e " o
when you’re done: 7
fou are Here
Mame: [Praple
Column MName Data Type Length Allow Mulle Unigue Primany ey
okt ink 4 Na Vs Vi
Mame rvarchar 100 es Mo Mo \£ you set A“ow
Company rvarchar 100 Yes Mo Mo NV“S to N°l Ehe
. . Telephone mvarchar 100 Yes Mo Mo n _':‘_"E
Bit fields — Ermail h w v Lo\::‘ a value:
L FredrEnar [=1
hold True or _ _ ha
Chent kit 1 es
False values
LastCall datetime Yes
and ¢an be Some ¢ards might
vepresented have some missin
as a theckbox. ,m ormation, so vy/|
et certain Columns
be blank.

Onte You eliek 0¥,

Visual Studio adds 3
“‘c‘: People Lable o

4he database:

Click on the OK button to save your new table. This will add an empty table
to your database.

—

you are here » 25

adding your data

Insert your card data into the database

Now you’re ready to start entering cards into the database.

Here are some of the boss’s contacts—we’ll use those to
set up the database with a few records. Database Dplorer 3=l Your \')ob is to cn{:cv.
7] A% the da‘{la ‘CYO"‘ all six
Fl ;ul Data Connecticns O£ ‘{')\CSC La‘f‘ds Ih'tp
2 |k ContactDB.sdl 'H'\C PCO?‘C ‘tablc
4 3 Tables
Expand Tables and then right-click] Pecyy-
@ xpand Tables and then right-clic Ca Replicani Drap Table
on the People table in the Database Tahle Properties
Explorer (or Server Explorer) and Edit Table Scherma
select Show Table Data. New GQuery
_"f Show Table Data
Fr Copy Ctrl=C
2] Refresh
@ Once you see the Table grid in the kb [Fiopeiies i
main window, go ahead and add all
of the data below. (You’ll see all null —
values at first—just type over them sl o L2 Ne\son
when you add your first row. And “ruud O T Name:
ignore the exclamation points that ~ Tyge TE\;“){‘ LO\\"": 8 Company: e
5 \
appear nexF to the data.) You don’t n ’c\\‘;\ .)(xa“S\a);ch Telephone: (A(\Q)SSS’S\S‘I‘B
need to fill in the ContactID column; - \\a’c\ % 5 cQL s '%MQBOV\@ HTPORY
that happens automatically. yo the YL o Email: ' /oAl 09
w I: 0%
or no Jes Last call-
yeo Client:
|
Name: LUCINAa Ericson Pager comasn;
Company: €ricson event
Name: L\O‘:jd\ Jones Fapas Comeany p ny ! a nes

Telephone: (513)s55-9533

Company: Back Box inC. ‘
Email: Lucg@er\csone\/ents.‘mféo

Telephone: (718)555-S628
Email: Loones@xblackiboxint.com

Client: \o Last call: 0s/17/10

Client: Yes Last call: 05/36/10 |

26 Chapter 1

get productive with c#

—

Fage: compan;

Name: Sarah Kalter
Company: Kalter, Riddle and. Sto$t

Vo
Name: Matt Franks

Fages company

Company: X2 \ndustries

Telephone: (33)sss-gias

Email: ma’c{.Frar\Ks@xgzindus’cr&es.com
Client: vyes

Telephone: ((;14)sS5-S641
Email: Sarah@wzg.org

Client: no Last call: 18/10/08

Last call: 05/a6/10

r Laverne Smith

,C
Objectville Paper Company is in the
United States, so the CEO writes
dates so that 05/26/10 means May
26, 20l0. |§ Your mathine is set to
3 di‘F‘FCY‘Ch'{‘, |oca{:ion, You may need to
enter dates di“cren{:ly,’ You might
need to use 26/05/10 instead.

®

Company: XYZ \ndustries

Telephone: (5)3)sss-8139
Email: La\/eme.sm‘\{h@xkszmc\us{ries.com

Client: Yes Last call: 04/1i/10

Once you've entered all six records,
select Save All from the File menu
again. That should save the records
to the database.

“Gave All” tells the IDE bo.savc
cvcvy’chiv? in Your application.

That's diffecent Lrom “Savc",.which
\')us{: saves the file \/ou’rc working on.

therejare no
Dumb Questions

Q: So what happened to the data after | entered it? Where Q: OK, I entered these six records. Will they be part of
did it go? my program forever?

A: The IDE automatically stored the data you entered into the
People table in your database. The table, its columns, the data
types, and all of the data inside it is all stored in the SQL Server
Compact database file, ContactDB.sdf. That file is stored as part
of your project, and the IDE updates it just like it updates your
code files when you change them.

A: Yes, they're as much a part of the program as the code

that you write and the form that you're building. The difference is
that instead of being compiled into an executable program, the
ContactDB.sdf file is copied and stored along with the executable.
When your application needs to access data, it reads and writes
to ContactDB.sdf, in the program’s output directory.

This file is actually a SQU —>

daJcabasc, and Your Program

€an use it with the code the
E genevated for You.

SQL

ContactDB.sdf

you are here »

the data’s all in there

Connect your form to your database
objects with a data source

We’re finally ready to build the .NET database objects that our
form will use to talk to your database. We need a data source,
which is really just a collection of SQL statements your program

will use to talk to the ContactDB database. Onte r,u'v.c done en fcrins data

he data entry window 1o

closc

Q Go back to your application’s form. get back 4o your £

orm.

Close out the People table and the ContactDB database
diagram. You should now have the Form1.cs [Design] tab visible.

Peaple: QuenylLall.cts\ContactUB.sdf)(ﬂ’

Lontactll) Mame Lompany | elephone Email Llient LastLall
.; Lloyd Jones Black Box Inc. (718)555 5638 Uones@wblack.. True 5/26/2010 12:00...
7 lurinda Fricson Fricenn Fuents (71 21555-9523 lucy@encaonev... Falwe SA7/200012400...
3 Liz Nelsen mp (419)555-2578 liznelson@JTP.... True 3/4/2009 12:00:...
| Matt Franks X¥Z Industries {212)555-8125 Matt.Franks@x... True 5/26/2010 12:00...
b Sarah Kalter Kalter, Fiddle a... (b14)555-5641 sarah@krs.org False 1270072008 1.240...
G Laverne Smith K Induslries (212)555-8129 LaverneSmith... Tiue 4/11/2010 12:00...

[T LM NLULL

NULL NuLL NueL

e Add a new data source to your application.
This should be easy by now. Click the Data menu, and then

select Add New Data Source...from the drop-down.

File Fdit View Project Debusg Dots Fremat Tasls Windew Help

P ad= J e B | & s (5] Show Data Souwees hifteahed ||| g
e & At a5 S Preview Data.. | el | = Ayl =2 The data source OIA'YC
eveating will ham];c all the
intevactions between Your

form and Your database.

4 Add Mew Dats So
4y Databace Explorer L:m..t},

_|J Ciala Connechions
4 Ly ContactDB.sdf
4 [Tables

=) People

A Hepheation

28 Chapter 1

get productive with c#

.NET Visval Data Storage Deployment
Objects Package
= e \
[\
- -

Configure your new data source.
Now you need to set up your data source to use the ContactDB
database. Here’s what to do:

* Step 1: Choose a Data Source Type. Select Database
and click the Next button.

* Step 2: Choose a Database Model. Select Dataset and
click the Next button.

* Step 3: Choose Your Data Connection. You should see
your Contact database in the drop-down. Click Next.

\: These s{:cPs tonnett Your

new data source with
* Step 4: Choose Your Database Objects. Click the fhc COF’c table in the
Tables checkbox. '\ ContacetDB 4 atabase.
* In the Dataset Name field, make sure it says n the non—Ex
“ContactDBDataSet” and click Finish. asked to save vess editions, You may be

tontig. Answer Y, iy Connec'l;noy, n the app

Now our Fo\rm £an use H\c dab

o Forml

|K
r’rh'

sowcc +o intevact with the

ConJCAC{'.DB da{,abasc \
.

[MAbcat &%l , =P ContactDBDataSet.xsd =9
Contact Lut 1.0,
Wiitten by: Your hlame ContactDB.sdf
_ Contac ataSet. This file is Your database.
’C/) Designer.cs
Here's Your C%is‘{:ing form.

Thcsc files ave what's
5cncra’ccd by the data

sourte You \)us*i set up-

you are here » 29

bind it all together

Add database-driven controls to your form

Now we can go back to our form and add some more controls. But these
aren’t just any cor'ltrols—they are controls t'hat are bound to our database 6\ I£ took 3 little work bk }
and the columns in the People table. That just means that a change to ! how were
the data in one of the controls on the form automatically changes the
data in the matching column in the database.

back to treating form obiects Lhat

interact with our data s va
56. \

Here’s how to create several database-driven controls:

I‘(: you don't see this tab,
seleet Show Data Sourtes
o Select the data source you want to use. Lrom the Data menu.
Select Show Data Sources from the Data pull-down menu. This
will bring up the Data Sources window, showing the sources you
have set up for your application.
E Database Explorer J Diata Sources L} You can also
look for, and
i click on, the

{ Data Sources
You all your dats | tab along the
Y 90t one setup, but | bottom of your
ore for diffevent i Database

This window shows
sources. We've op|
YOM COlA,d have m

bles or databases. i Explorer window.

e Select the People table.

Under the ContactDBDataSet, you should see the People table and all of the columns in it.
Click the “expand” icon next to the People table to expand it—you’ll see the columns that you
added to your table. When you click on the People table in the Data Sources window and drag
it onto your form, the IDE automatically adds data controls to your form that the user can use
to browse and enter data. By default it adds a DataGridView, which lets the user work with the
data using one big spreadsheet-like control. Click the arrow next to the People table and select
Details—that tells the IDE to add individual controls to your form for each column in the table.

and thoose Details to

Data Sources -4 X . his arrow
i a3y b i\c‘ﬁk{:tcTDE %o add individual tontrols

Lo your Form vather than one lavoe

s\?vcadshcc{—hke data tontrol:

4 o4 ContactDEDatabetl

g _] People 3
~ abi LontactlD
s'ahl_ Narne

[sbl Company 1 '
All of the columns . Telephone You'll anly see Ehis drop-dowr iy e
You eveated should fobd, Emasl ot 3 form designer w:\:{:’:‘ Lo"c’:ro\s

w| Chien a3 on
show up heve. E Lm:ﬂ“ IDE. It lets you o Sda{',a sourte and

diveekly out of your

30 Chapter1 onto Your Torm:

get productive with c#

{NET Data Storage Deploywment
Patabase o Package
AW A
,,,,,,,,, (g

Create controls that bind to the People table.

Drag and drop the People table onto your form in the form
designer window. You should see controls appear for each
column in your database. Don’t worry too much about how they
look right now; just make sure that they all appear on the form.

If you accidentally click out of the form you’re working on, you
can always get back to it by clicking the “Form1.cs [Design]’
tab, or opening Forml . cs from the Solution Explorer.

Feiml.cs lll:.;.qn]'

e
i .
£ ——
I::a’lclzs HN M40 ol b M & ¥
4oolbar for f t',}“"‘"
navigating . -
Lheough the When Y e
People table. T < | dragae
Hame 4 Peo?\c {',GHC
Corpary onto the form,
Teleghane a tonbrol was
Bl eveated for
Qat 1] chedkdion eath column in B This adapter allows your
Last Gl Thursday | Decesber 24, 2005 [-h\\c ‘{',ab\c COV\‘{',V‘O‘S ‘{;O ih'{:CYaC{:
with SQL tommands
% = ! that the [DE and data
I\t‘::,cu:o:n /-ﬁ A conmactBDutitert 0F chagsen. T paoaleT sourte genevated for You.
\/ow ‘("orm; but

; ip sl)
vepresent the = N '
tode that the T

IDE eveated to

This obi C'l'.
: JECT Lonnetts the
interact with form o
e People tabl poor Pecle able: The bingg
and ContactDB Cormneets the footbar
database. ‘3°"I’crols o your
e.

you are here » 31

make it preity

Good prograwms are intuitive to use

Name: Laverne Smith [s compar,
Right now, the form works. But it doesn’t look that great. Your > Company: XYZ \ndustries
application ha§ to do more than be functional. It should be Our form would Telephone: (33)s55-8130
easy to use. With just a few simple steps, you can make the be move intuitive Email: Laverne Smith@xuzindustri
form look a lot more like the paper cards we were using at the £ it looked ' = Eia €=com
beginning of the chapter. 5 lok like the Client: ves Last call: 05/36/07

Lon*{:ad: tavd.

@ Line up your fields and labels.
Line up your fields and labels along the left edge of
the form. Your form will look like other applications,
and make your users feel more comfortable using it.

4

5 Formi ===

M 4|0 oft0} | b M | & X id
B‘UC lines W‘" show Hame: |I e I

up on the go\rm as
you drag controls
around. _H\C‘I,Vc

theve to help you

line the fields up- -

@ Change the Text Property on the Client checkbox.
When you first drag the fields onto the form, your Client
checkbox will have a label to the right that needs to be deleted.
Right below the Solution Explorer, you’ll see the Properties
window. Scroll down to the Text property and delete the
“checkbox1” label. —— —

chemCheckBox Systemn, Windows. Formi Check = DClC£C {"\IS word 'bo makC

Mo = é-\J{:he label 90 away-
TakiSop Trar -
I it <=

Tedfihgn Bolckellml o)
TedimageRelabon Overlay
ThreeSlate False
WeCompatibleTexl Falie
UseMnemanic Tiue
Usenualitylelackl True
Wse\WaitCursor Fake
Nrhle Tihae

Tewt

Thoe bexd associated with the control,

32 Chapter 1

get productive with c#

.NET Visual NET Data Storage Deployment
Objects Database e Package
Objects = .

You are Here —»Og | A
=2 O P VA
o019
Pene® K ’

Make the application look professional.

You can change the name of the form by clicking on any empty
space within the form, and finding the Text property in the
Properties window of your IDE. Change the name of the form
to Objectville Paper Company Contact List.

You can also turn off’ the Maximize and Minimize buttons
in this same window, by looking for the MaximizeBox and
MinimizeBox properties. Set these both to False.

/—\>

Pregemes =

Faeml Syetem Windawd Farmp Faem -
e il
FhawinTasklar
Size
Suzclingbhys
StartFoaition
Tog
Tophemn
Treragsencybey
L ait i

ies window
) onycv{\cs win
—l;\\:u\d e v\g\\‘t \)c\c.aw
\ukion Exploren
i‘\:\: \::wcr v'\g\\{: pane ©

\low‘ ‘D .

True

#OR, 761

Aude
WindowsDefauklocati

Faise
O
Fake

Windewtlale Hewrinad

Test
Thee fexd snsccted vdh the cantrel

13

The reason You wah‘{: '{‘,o {‘,wn
off the Mazimizc button is
that maximizjhg Your ‘Form
won't thange the positions of
the controls, so it'll look weird.

The Text Property
tontrols the hcadihg on
your form'’s title bar.

If you don’t have a Properties window, you can turn
it on by selecting it from the View drop-down menu.

A gooJ application not only worlcs, but is easy
to use. [t's always a gooJ idea to make sure it
hehaves as a ty]oical user would ex]oect it to.

you are here » 33

ok, one last thing...

Test drive

OK, just one more thing to do... run your program and make sure
it works the way you think it should! Do it the same way you did
before—press the F5 key on your keyboard, or click the green arrow
button ¢ on the toolbar (or choose “Run” from the Debug menu).

You can always run your programs at any time, even when they’re not
done—although if there’s an error in the code, the IDE will tell you
and stop you from executing it.

Cliek +he X box in the torner
s{:op the Program so You

€an move on fo fhe th{: S'l:t]?-

o Objectville Paper Company Contact List E
1 of6 | b M |
These tontrols — ContactiD: @ |
let you age ' ™
£hrough the Name: Loyd Jones UL panien
B lc[diffevent Jc;t:*ds Company: Black Bax Inc o
. se.
u1 lflg your in the da Telephone: (71315555638
Email: Llonee@dblackbadnc com
rogram
P g Chertt:]
overwrites Lot Cal: vyednesday, May 26.2010 [~

the data in

y our ‘:[atal)aseo We'll spend move time

on his in {',\'\C V\C*JC
chapter.

The IPE builds first, then runs

When you run your program in the IDE it actually does two things. First it

builds your program, then it executes it. This involves a few distinct parts. :

It compiles the code, or turns it into an executable file. Then it places the
compiled code, along with any resources and other files, into a subdirectory
underneath the bin folder.

In this case, you'll find the executable and SQL database file in bin/
debug. Since it copies the database out each time, any changes you

make will be lost the next time you run inside the IDE. But if you run the
executable from Windows, it’ll save your data—until you build again, at
which point the IDE will overwrite the SQL database with a new copy that
contains the data you set up from inside the Database Explorer.

34 Chapter 1

Every time you
build your
program, the
: IDE puts a

. fresh copy of
Wﬂfﬁl’l 1t' the database
: in the bin
. folder. This will overwrite
any data you added when
you ran the program.

When you debug your program,
the IDE rebuilds it if the

code has changed—which
means that your database will
sometimes get overwritten
when you run your program in
the IDE. If you run the program
directly from the bin/debug or
bin/release folder, or if you
use the installer to install it on
your machine, then you won’t
see this problem.

get productive with c#

NET Visval

How to turn YOUR application s Fevon
into EVERYONE'S application

At this point, you’ve got a great program. But it only runs l \ . s 17 = ‘
on your machine. That means that nobody else can use the ;

app, pay you for it, see how great you are and hire you... s
and your boss and customers can’t see the reports you’re

generating from the database.

Data Storage Peployment

Jou are Here
C# makes it easy to take an application you've created, and

deploy it. Deployment is taking an application and installing

it onto other machines. And with the Visual C# IDE, you
can set up a deployment with just two steps. mml ding the solud "
n ¢ solution Jus

eopies the files 4o Your
local machine. Publish
treates a Setup exetutable
and a Con‘cigwa{:ion file

so that any mathine ¢ould

File Edit Vwew Fropect | Debug DOata Format Tools Window Help
$ '..Ij o _-f -h 0 Add Windows Form,. I
P le & 3 % AddCless. ShiftsAl=C it g2

Select Publish Contacts from
the Project menu.

T e lem. ClileShilt=A]
[l * Add Existing Nem. Shifts Alts & install your program.
Add Relerence..,
Add Sernce REelerence. .,
Sel a5 StartUp Propect

1 Contacts Propertes..
Publesh Contacts

Just accept all of the defaults in timmrkonsi L Eﬂl
the Publish Wizard by clicking || Where do you want 1o publish the application? ?
Finish. You’ll see it package up

your application and then show Sonpeily e Mocation b publinh tha spplcation:

you a folder that has your Setup. fsibinii] P
exe in it. You may publsh the applicabeon to 3 web sae, FTP server, or file path.
Examphes
Dotk pathe ehdmpleny\myapplication
) . . . File shares \uersefmvapplication
H: YO!A re usma V'S"a, S{Udlo FTP server fitpe/iip.microsoft. commyapplication

Express, you'll find “Publish” e
in the P\ro\)cc{: menu, but in
other editions it may be in
the Build menu.

you are here » 35

share the love

Give your users the application

Once you've created a deployment, you’ll have a new folder
called publish/. That folder has several things in it, all
used for installation. The most important for your users is
setup, a program that will let them install your program on
their own computers.

This is wheve all of the
suwor{:\ng £iles for the
installer ave stored.

I®|) = Contects » poblish » = |4y

OrgamN\g Inchade inbwany + Sharewith = Bum ® =~ 8

¢ Favesites

B Desktop { -
You ma i ;
need toy W gl i j D
Wa-tch i—t—! run the : " Sppleation Files Coot et e
: installer as e -
. administrator. : ' 2 tems S BB Shaved
If SQL Server -
. 1
Compact isn’t already This ;
installed on the This file tels Lhe installer 's is how your
machine, the installer ' ds users will insta||
) : : at nee
will automatically : C""YJC.‘““S Jd\d when the he program on
download and install i o be mtlude led their computers/
it. On some machines, : prodjam is installed: '

this won’t work unless
you run the setup

as administrator, so
right-click on “setup”
and choose “Run

as administrator” to
install it. If you don’t
have access to do
that, don’t worry! You
don’t need to in order
to move forward in the
book.

My secretary just told me that you've
got the new contact database working
already. Pack your bags—we've got room on
the jet to Aspen for a go-getter like youl

[d 'ob!
like the boss is pleased. Goo
'%:\:‘:’ss \')us{: one move thing to do bcﬁorc
you tan chc off to the slopes, {‘,hout_&,\'\...

36 Chapter 1

get productive with c#

) NET Visual NET Data St Vepl t
VOU re NOT dOVle: ‘l’es‘l' Objecflzua Vatabase: B P:l;lgqmew

. . Objects 2
your installation | @ DVD
Before you pop the cork on any champagne bottles, you need ‘ \ A { V; A *
to test your deployment and installation. You wouldn’t give = .)
anyone your program without running it first, would you? o T
Close the Visual Studio IDE. Click the setup program,

and select a location on your own computer to install the Youl are Here
program. Now run it from there, and make sure it works like
you expect. You can add and change records, too, and they’ll
be saved to the database. N,
{:oow You an make ¢hanaes
the dats, and they'7 .
saved to the databge. x

J

ol Objectville Paper Company Contact List Iﬁ
You tan use the

avvous and Lhe 1 of6 | b B =
text field to switeh Contact ID: —

bC'l',WCCh reél f
or\ds./r Mame: Uoyd Jones f ¥ Faper company

Company: Black Box Inc.

Telephone: (718)555-5638

Email: LJones@xblackboxing.com
éo ahcad...makc Client:
some thanges.
) Last Call: Wednesd M 26,2010 [~

owve deployed ednesday. May :

-.Yic <o this time, The contatts you
In S‘bck €n chd are a“

{:\'\C‘[‘Ehcrc. Thcy’rc Pa"'l'«

of the ContactDB.
sdf database file,
which gets installed
along with Your
Program.

TEST EVERYTHING!

Test your program, test
your Jeployment, test the
data in your application.

you are here » 37

super fast!

You've built a complete
data-driven application

The Visual Studio IDE made it pretty easy to create

a Windows application, create and design a database,

and hook the two together. You even were able to
build an installer with a few extra clicks.

From this

Name: Lloyd Jones l'\ —
Company: Black Box inC.
Telephone: (718)555-S628

Email: Loones(@xblackboxine.com

Last call: 05/36/01

Client: yes

.NET Visual .NET Data Storage Deployment
Objects Databasez=x! Package

Objects ; mmmmm =

o g

B

to this

S Objectville Paper Company Contact List i
1 of6 | b ¥ b | |
Contact (D: | _
Hame: Uayd Jones | ..j\,..wm
Company DRack Dex bnc

Telephone: (T10)555-5624

Llones@diackboine com

cd

Lest Call. wadneedsy, May 26,2010 @~

in no time flat.

The power of Visual C# is that you can o[uickly
get up and running, and then focus on what

your program’s §u]gposei to do..not lots of
winJows, l)uttons, and SQL access code.

38 Chapter 1

get productive with c#

CSharpeross

Take some time to sit back and exercise your C# vocabulary with

this crossword; all of the solution words are from this chapter.

3
AEEEEEEN

Across

3. The explorer is where you edit the
contents of your SQL tables and bind them to
your program

5. An image, sound, icon, or file that's attached to
your project in a way that your code can access
easily

9. You build one of these so you can deploy your
program to another computer

12. What the "I" in IDE stands for

14. When you double-clicked on a control, the
IDE created this for you and you added code to it
15. Every row contains several of these, and all of
them can have different data types

16. The Explorer shows you all of the
files in your project

MEEEEEEN

Down

1. What's happening when code is turned into an

executable

2. What you change to alter the appearance or

behavior of controls on your form

3. What you're doing when you run your program

from inside the IDE

4. The "About" box in the Objectville Paper

Company Contact List program was one of these

6. You displayed the Objectville Paper Company

logo with one of these

7. Before you start building a program, you

should always think about users and their

g. A database can use many of these to store
ata

10. The data type in a SQL database that you use

to store true/false values

11. Before you can run your program, the IDE

does this to create the executable and move files

to the output directory

f13. You drag controls out of this and onto your
orm

you are here » 39

crossword solution

CSharpeross Solution

Download from Wow! eBook <www.wowebook.com>

40 Chapter 1

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

2 its all just code

*
* Under the hood *

One of these days
T'll figure out what's
going on under there...

You’re a programmer, not just an IDE user.

You can get a lot of work done using the IDE. But there’s only so far it
can take you. Sure, there are a lot of repetitive tasks that you do when
you build an application. And the IDE is great at doing those things for
you. But working with the IDE is only the beginning. You can get your
programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

this is a new chapter

41

at your service

When youte doing this... Al of Ehese fasks have 4o

i ’ it i : do with standard acttions
The IDE is a powerful tool—but that’s all it is, a foo/ for you to use. Every time and boilcryla{:c +ode. Those

you change your project or drag and drop something in the IDE, it creates code ave the thinas the [DE is
automatically. It’s really good at writing boilerplate code, or code that can be ¢)
reused easily without requiring much customization.

5rca{: for hcl\?ing with.

Let’s look at what the IDE does in typical application development, when you're...

Q Creating a Windows Forms Application project | . o ==
There are several kinds of applications the IDE lets you T ioTEere N
build, but we’ll be concentrating on Windows Forms e A i
applications for now. Those are programs that have R il
visual elements, like forms and buttons. T G

Make sure you always treate a Windows Forms Applicati
project—that tells the [DE to eveate an cmp{:\/PEom g
and add it to your new project.

9 Dragging a button out of the toolbox and f
onto your form, and then double-clicking it “H\Fﬂ"‘ﬂ/ K
Buttons are how you make things happen in your form. \'f \ | 1/
We’ll use a lot of buttons to explore various parts of the o buttonl p—
C# language. They’re also a part of almost every C# '-/ fiad S
e o \ N
application you’ll write. /
Frepotin » 3 X
Team] Estem VWmdeas Famm o
e Setting a property on your form 2 o
The Properties window in the IDE is a really .
powerful tool that you can use to change attributes of e PR
just about everything in your program: all visual and Tig _
functional properties for the controls on your form, F iy
attributes of your databases, and even options on your e ‘;L
project itself. Winkoelde: sl | N
Z;ZC”;:ECH:A& window in {he IDE is{v R s
Y way to edit a specifie Chunk

ot tode in Forml.D

It would take 'ofcsiancr.cs au%,omajcically.

longer 4o do
h‘::dc.\rl;:'sc fh,c F4 shorteut 4o :Fi l?;xe
42 Chapter 2 perties window if i’s tlosed.

it’s all just code

..the IDE does this

Every time you make a change in the IDE, it makes a
change to the code, which means it changes the files that
contain that code. Sometimes it just modifies a few lines,
but other times it adds entire files to your project.

These files are ereated from
a predefined template that
eontains the basie tode 4o
treate and disFlay a form.

Q ...the IDE creates the files and folders
for the project.

_>D

WindowsApplication1 Form1.cs Form1.Designer.cs
.Csproj

Program.cs Properties

e ...the IDE adds code to the Forml.Designer.cs file that adds

the button to the form, and then adds code to the Forml.cs
file to handle the button click.

q private void buttonl Click(object sender, EventArgs e)
{

,\ Form1.Designer.cs

}
The [DE knows how to add an CMY{:\/ :nc{‘)\od This rod
4o handle a button elick. But it doesn't know e

S gets
what to ?u{: inside it—that's Yyour Job- Form /‘,;iéCd to
Form1.cs
e ...the IDE opens the Forml.Designer.cs file and

updates a line of code.

The IDE went into this file...

partial class Forml

{

’ . this.Text

“Objectville Paper Company Contact List”;

Form1.Designer.cs

.and u\’da{:cd this line of tode.

you are here » 43

great,

Where programs come from

A C# program may start out as statements in a bunch of
files, but it ends up as a program running in your computer.

Here’s how it gets there.

44

Every program starts out as source code files

You've already seen how to edit a program, and how the IDE saves your program
to files in a folder. Those files are your program—you can copy them to a new
folder and open them up, and everything will be there: forms, resources, code, and
anything else you added to your project.

You can think of the IDE as a kind of fancy file editor. It automatically does the
indenting for you, changes the colors of the keywords, matches up brackets for you,

and even suggests what words might come next. But in the end, all the IDE does is

edit the files that contain your program. }
There’s no reason you

; ‘ couldn't build Your
solution (. s1n) file and a folder that contains all of the other files for the program. programs in Notepad,

The solution file has a list of the project files (which end in . cspro3j)in the but it'd be a lot
solution, and the project files contain lists of all the other files associated with

The IDE bundles all of the files for your program into a solution by creating a

: St ‘ ' movre {imc—consuming.
the program. In this book, you’ll be building solutions that only have one project

in them, but you can easily add other projects to your solution using the IDE’s
Solution Explorer.

The .NET Framework gives you the right tools for the job

C# is just a language—Dby itself, it can’t actually do anything. And that’s where
the .NET Framework comes in. Remember that Maximize button you turned
off for the Contacts form? When you click the Maximize button on a window,
there’s code that tells the window how to maximize itself and take up the whole
screen. That code is part of the INET Framework. Buttons, checkboxes, lists...
those are all pieces of the .NET Framework. So are the internal bits that hooked
your form up to the database. It’s got tools to draw graphics, read and write files,
manage collections of things...all sorts of tools for a lot of jobs that programmers
have to do every day:.

The tools in the .NET Framework are divided up into namespaces. You've seen
these namespaces before, at the top of your code in the “using” lines. One namespace
is called System.Windows . Forms—it’s where your buttons, checkboxes, and
forms come from. Whenever you create a new Windows Forms Application project,
the IDE will add the necessary files so that your project contains a form, and those
files have the line “using System.Windows.Forms;” at the top.

it’s all just code

Build the program to create an executable

When you select “Build Solution” from the Build menu, the IDE
compiles your program. It does this by running the compiler, which
1s a tool that reads your program’s source code and turns it into an
executable. The executable is a file on your disk that ends in . exe—
that’s what you double-click on to run your program. When you build
the program, it creates the executable inside the bin folder, which is
inside the project folder. When you publish your solution, it copies

the executable (and any other files necessary) into the folder you’re
publishing to.

When you select “Start Debugging” from the Debug menu, the IDE
compiles your program and runs the executable. It’s got some more
advanced tools for debugging your program, which just means running
it and being able to pause (or “break”) it so you can figure out what’s
going on.

Your program rums inside the CLR

When you double-click on the executable, Windows runs your program.
But there’s an extra “layer” between Windows and your program called
the Common Language Runtime, or CLR. Once upon a time, not
so long ago (but before C# was around), writing programs was harder,
because you had to deal with hardware and low-level machine stuff. You
never knew exactly how someone was going to configure his computer.
The CLR—often referred to as a virtual machine—takes care of all
that for you by doing a sort of “translation” between your program and

the computer running it. You don't veally have to worry
You’ll learn about all sorts of things the CLR does for you. For example, about the CLR much Y'?)H"

it tightly manages your computer’s memory by figuring out when your now. [t's enough to know
program is finished with certain pieces of data and getting rid of them it's theve, and takes ca\rc(:
for you. That’s something programmers used to have to do themselves, of vunning your ?‘“?Y?"‘ or
and it’s something that you don’t have to be bothered with. You won’t You automatically. You Il learn
know it at the time, but the CLR will make your job of learning C# a move about it as you 9o

whole lot easier.

you are here » 45

mother’s little helper

The IDE helps you code

You've already seen a few of the things that the IDE can do.
Let’s take a closer look at some of the tools it gives you.

0 The Solution Explorer shows you everything in your project
You’ll spend a lot of time going back and forth between classes, and the easiest
way to do that is to use the Solution Explorer. Here’s what the Solution Explorer
looks like after creating the Objectville Paper Company Contact List program:

Solution Explorer * B X

= Bia £

,‘g Sululivn "Cunlacls' (1 pruject)

The Solution

4 57| Contacts . Explorer shows
=d| Properties ou how the
?,:. RFfFannf": diffevent Files
i app.config in the solution
| | ContactDB.sdf folder.
|j__.'] ContactDBEDataSetxsd
=] Forml.cs

#] Prograrm.cs

Heve's the form’s
0 Use the tabs to switch between open files resoure file that

Since your program is split up into more than one file, you’ll usually have several you added the

Objectville Paper
ComPah\/ logo -{;o

code files open at once. When you do, each one will be in its own tab in the code
editor. The IDE displays an asterisk (¥) next to a filename if it hasn’t been saved yet.

Farml.cs [Design] Forml.cs 2 EEslini M=

N ———

When \/ou'rc working on a £orm, \/ou,“ often ha‘{c +wo tabs
for it at the same time—one for +he form dcmgncr,. and
one 4o view the form’s tode. Use control—tab to switth

bebween open windows quickly.

46 Chapter 2

it’s all just code

The IDE helps you write code
Did you notice little windows popping up as you typed code into the IDE? That’s
a feature called IntelliSense, and it’s really useful. One thing it does is show you

possible ways to complete your current line of code. If you type MessageBox and
then a period, it knows that there are three valid ways to complete that line:

MessageBox.

/_Thc IDE knows that MessageBox has three

‘W Equals

‘@ ReferenceEquals

J

Mo |

methods éalled Equals, RcFercnécEquals, and Show.
£ you type S, it selects Show. Type “(“ or spate,
Tab, or Enter o Lell the [DE 4o £ill it in for you.

That can be a veal timesaver if you've typing a lot

0‘(: rea”y IOhS "\C‘H\Od names.
If you select Show and type (, the IDE’s IntelliSense will show you information
about how you can complete the line:

This means that there
ave 2| different ways
that you tan call the
Mcssachoﬁ's Show
method (like ways to
display diffeent buttons

or itons).

MessageBux. Show(]

& 3of 21 w)System. Windows.Forms.DialogResult MessageBox.Show(string text, string caption)
Displays a message box with specified text and caption.
text: The text to display in the message box

The IDE also has shortcuts called snippets that let you type an abbreviation to tell
it to fill in the rest of the code. Here’s a useful one: type mbox and press the Tab key
twice, and the IDE will fill in the MessageBox . Show method for you:

£ Debugging
MessageBox.Show(Test™); When you use star ?

to our program 'ms'udf

{‘)\: ‘ﬁ‘) , the Liest thing i

does is build your program:

it compiles, then your program
E not, it won £ vun, and

The Error List helps you troubleshoot compiler errors
If you haven’t already discovered how easy it is to make typos in a CG#

program, you’ll find out very soon! Luckily, the IDE gives you a great tool for will show you evvors in the
troubleshooting them. When you build your solution, any problems that keep it Evvor List. g

runs. I

from compiling will show up in the Error List window at the bottom of the IDE:

A P . Crreer |ist - M
missing semicolon
at the end of 3 i) £ Errors | A U Warmings | (i) U Messages
S'ta'tCMCh‘t is one o‘(" Deseriplion File Lime Column Project
‘H\c MOS{‘, tommon “Gystern Windows.Forms Mrssagefloy' Farml.cs M Contacks
doec not contain a definition for YT

ervors that keeps your

a0 @ 2 :cxpected Forml.cs 45 33 Contacts
program from bwldm5! :

Double-click on an error, and the IDE will jump to the problem in the code:

private woid pictureBoxl Click{object sender, Eventhirgs e)

1
MessageBox.XYZ("hi") The [DE will show a ved

Y\/undcrscwc {‘,o show \/ou

that there’s an error-.

you are here » 47

let’s dig in

When you change things in the IPE,
you're also changing your code

The IDE is great at writing visual code for you. But don’t
take our word for it. Open up Visual Studio, create a new
Windows Forms Application project, and see for yourself.

o

Open up the designer code

Open the Forml.Designer. cs file in the IDE. But this time, instead of opening it in
the Form Designer, open up its code by right-clicking on it in the Solution Explorer and

When you see a ‘Do this!”, pop open the [DE
and ﬁo”ow along. Wc'll tell Yyou c%ac{:l\/ what
+o do, and ?oin{: out what to look for to 5&:
the most out of the example we show You.

*

;—D@ this! *
*

selecting “View Code.” Look for the Form1 class declaration:

Notice how it's a

partial class Forml < —~_/

partial ¢lass? We'll talk about that in a minut
minu (4

Open up the Form designer and add a PictureBox to your form

Get used to working with more than one tab. Go to the Solution Explorer and open up the
Form designer by double-clicking on Forml . cs. Drag a new PictureBox onto a new form.

Find and expand the designer-generated code for the PictureBox control

Then go back to the Form1.Designer.cs tab in the IDE. Scroll down and look for this line in the code:

Click on the ?lus sign

Windows Form Designer generated code
Click on the + on the left-hand side of the line to expand the code. Scroll down and find these lines:

//
// pictureBoxl
//

this.pictureBoxl.Location = new System.Drawing.Point (276, 28)

this.pictureBoxl.Name = “pictureBoxl”;

this.pictureBoxl.Size = new System.Drawing.Size (100,

this.pictureBoxl.TabIndex = 0;

this.pictureBoxl.TabStop = false;

48 Chapter 2

Don’{: worry i‘c the

numbers in your tode

for the Lotation and
i Gize lines ave a little

/N diffevent than these...

50) 7

it’s all just code

Wait, wait! What did that say?

Scroll back up for a minute. There it is, at the top of the Windows
Form Designer—generated code section:

Most comments onl\/ start
with two slashes (/7).

/// <summary> But the [DE sometimes
/// Required method for Designer support - do not modify adds these three—slash

/// the contents of this method with the code editor.

/// </summary> tomments.
There’s nothing more attractive to a kid than a big sign that says, “Don’t These are XML tomments,
touch this!” Come on, you know you’re tempted... let’s go modify the and You tan use them to
contents of that method with the code editor! Add a button to your dotument Your tode. Flip to
form, and then go ahead and do this: “Leftovers” section #l in the

Appendix of this book to learn
move about them.

o Change the code that sets the buttonl.Text property. What
do you think it will do to the Properties window in the IDE?
Give it a shot—see what happens! Now go back to the form designer and
check the Text property. Did it change?

e Stay in the designer, and use the Properties window to
change the Name property to something else.
See if you can find a way to get the IDE to change the Name property. It’s

in the Properties window at the very top, under “(Name)”. What happened You don't have o save the
to the code? What about the comment in the code? Lorm or vun the program
4o see the changes: st d
e Change the code that sets the Location property to (0,0) and make the thange in the code
the Size property to make the button really big. editor, and Jc,hcn“cllctk on
Did it work? fhe tab labeled Forml .ts

[Design]” 4o flip over to the
form dcsigncr—-ﬂnc ¢thanges

e 6o back to the designer, and change the button's BackColor diately:

imme
property to something else. should show vf
Look closely at the Forml . Designer.cs code. Were any lines added?

It's always easier to use the IDE 1o change your form’s
Designer-generateJ code. But when you c[o, any c]mange you
make in the IDE ends up as a cltange to your project’s code.

you are here » 49

your program makes a statement

Every time you make a new program, You

dhcinc d names
pace for it : ,
Anatowmy of a program serarate from the NET Fopmrory, L0 &
sses.
Every C# program’s code is structured in exactly the
same way. All programs usc namespaces, classes,
and methods to make your code easier to manage.

A ¢lass tontains a ?ic_cc- o‘(: Your
program (although some very small - -

programs ean have Just one elass).
\/—5 | | Method 1

statement
statement

A ¢tlass has one o movre methods.
Your methods always have to

live inside a elass. And methods
are made up ot statements—like

the ones you've already seen.

Method 2
statement
I | statement

Let’s take a closer look at your code

Open up the code from your Contacts project’s Forml.cs so
we can go through it piece by piece.

© The code file starts by using the .NET Framework tools
You’ll find a set of using lines at the top of every program file. They tell C# which parts of
the INET Framework to use. If you use other classes that are in other namespaces, then you’ll
add using lines for them, too. Since forms often use a lot of different tools from the .NET
Framework, the IDE automatically adds a bunch of using lines when it creates a form and
adds it to your project.

using System;

using System.Collections.Generic; Q\csc using lines ave af the top
using System.ComponentModel; every code file. They Lell

] g 5y P CH# 4o use all of those YNET
using System.Data; Framework elasses. Each one ells
using System.Drawing; Yyour program that the tlasses in

this particular s file will use all

of the classes in one specific NET
using System.Text; Framework namespace.

using System.Ling;

using System.Windows.Forms;

One thing to keep in mind: you don’t actually /ave to use a using statement. You can always
use the fully qualified name. So if you leave out using System.Windows.Forms, you can
still show a message box by calling System.Windows.Forms.MessageBox.Show (),
and the compiler will know what namespace you’re talking about.

50 Chapter 2

it’s all just code

O o programs are organized into classes
Every C# program is organized into classes. A class can do anything, but most classes do one
specific thing. When you created the new program, the IDE added a class called Form1 that

displays a form. When you talled your program Contaets, the IDE ereated a
[_/_\ namespace for it ealled Contatts b adding the namespace

namespace Contacts keyword at the top of your tode file. Everything inside its
@ pair of curly bratkets is part of the Contacts namespate.

public partial class Forml : Form

KThis is a tlass called Forml. [t tontains all of the tode to draw the
¢ form and the Toolbox tontrols on it. The IDE eveated it when You
told it 1o ereate a new Windows Forms Application ?ro\)cc{.

© Classes contain methods that perform actions
When a class needs to do something, it uses a method. A method takes an input, performs
Look for the some action, and sometimes produces an output. The way you pass input into a method is by
ma{:dhing pairs using parameters. Methods can behave differently depending on what input they’re given.
of brackets. Some methods produce output. When they do, it’s called a return value. If you see the

EVCV“/ {is keyword void in front of a method, that means it doesn’t return anything.
eventuall

?ai:ec: uFY with public Forml () This line ealls a method named
a }. Some 'hi'{:ialichom?oncn‘EO, which the
pairs tan be { IDE also eveated for you.

inside othevs. InitializeComponent (

}

O A statement performs one single action
When you added the MessageBox . Show () line to your program, you were adding a
statement. Every method is made up of statements. When your program calls a method, it
executes the first statement in the method, then the next, then the next, etc. When the method
runs out of statements or hits a return statement, it ends, and the program resumes after the
statement that originally called the method.

This is a method called ?ic{',choﬁl CliekO H\a: ;’;hi; mc:;h:d has two pavameters called
1S IS m : L . ' et)
36{',5 called when the user tlicks on the ?lL{WC o% 1/ 4

private void pictureBoxl Click(object sender, EventArgs e)

{
MessageBox.Show (“Contact List 1.0”, “About”);
} Your statement called the Show() method,
This is a statement. You alveady which is part of the MessageBox class, which
' know what it does—it pops up a is inside the S\/s{xm.Windows.Forms namespace.
@ little message box window.

Your statement passed two parameters to the Show()

method. The First one was a string of text to display
in the message box, and %he setond one was a string to
display in its title bar.

you are here » 51

a closer look

Every C# Program can only

ha i
Your program knows where to start o %) i oy
T: .tl' s alwa\/s called Main0).
When you created the new Windows Application solution, one of the files the S‘l:a‘\;r'lzs hhow " khows' preve v
IDE added was called Program.cs. Go to the Solution Explorer and double- Y rn

click on it. It’s got a class called Program, and inside that class is a method called
Main (). That method is the entry point, which means that it’s the very first
thing that’s run in your program.

Here’s some tode the [DE built for you

auﬁoma{jca”\/ in the last thapter. You'll
find it in P\rogram.(,s‘

Jour Code Up Close

using System;

using System.Ling;

using System.Collections.Generic;
using System.Windows.Forms;

e for all this eode is
9 The namcsvaﬁf o .
namespace Contacts Contacks. We'll talk about namespaces
{ move in 3 few pages-
static class Program Lines that begin with two or more slashes are
{ tomments, which You ¢an add anywhere You want.

The slashes tell C¥# 4o ignore them.
/// <summary>

/// The main entry point for the application.
/// </summary> . .
very time

h You vrun Your Program,
[STAThread] /\ it starts heve, at the anc\rYaPoint
static void Main()

{
Application.EnableVisualStyles() ;

eApplication .SetCompatibleTextRenderingDefault (false);

) . . F 1 ;<——This statement eveates and
Application.Run(new Form 0) dis\?la\/s the Contacts form, and

} ends the program when the
Lorm’s elosed.

}
y | do detlave/

The fivst part of every elass or
method is ¢alled 3 detlavation.

Remember, this is \)us{; a starting point for you to
dig into the tode. But before You do, \/ou’“ need to
know what \/ou)rc Iooking at.

52 Chapter 2

it’s all just code

C# and .NET have lots of built-in features. . d

You’ll find lines like this at the top of almost every C# class Your programs WIH.USC movre an | movre
file. System.Windows.Forms is a namespace. The namespaces like this ?nc as \/ot ~Tzw‘\
using System.Windows.Forms line makes everything <—_ about C# and NET's o{,hcrk uilt—in

in that namespace available to your program. In this case, that features {‘,h\roughou{: the book.
namespace has lots of visual elements in it like buttons and . .
forms. £ you didn't svcci-(:\/ the u,s'mg line,
youd have to explieitly type out System.
Windows.Forms every time you use

The IDE chose a namespace for your code. anything in- that namespace

Here’s the namespace the IDE created for you—it chose
Contacts based on your project’s name. All of the code in

your program lives in this namespace. /Q/‘ Namcs‘(raccs let You use the same name
in diffevent Programs, as long as those

Programs aren’t also in the same n
. . a .
Your code is stored in a class. mespace

This particular class is called Program. The IDE created it
and added the code that starts the program and brings up the
Contacts form.

You tan have multiple

tlasses in a single namespace:

. have move
This code has one method, and it Technieally, a."(*)"wg\jj" and You tan
contains several statements. than e Aﬂ.a il e he enbry point.-
A namespace has classes in it, and classes have methods. Lell C#F w "Jc need to do that now-
Inside each method is a set of statements. In this but yyou won
program, the statements handle starting up the Contacts
form. Methods are where the action happens—every
method does something. Ever y C# Progr am must

have exactly one method

Each program has a special kind of .
methoF:i c%lled the en'rF:'y point. CaueC[Mam. Tllat metltO(:[

Every C# program must have exactly one

method called Main. Even though your 15 tlle enly oint ‘[01'
program has a lot of methods, only one can be your COC[e.

the first one that gets executed, and that’s your
Main method. C# checks every class in your

code for a method that reads static void Wlleﬂ you run your COC[e,
Main (). Then, when the program is run, the . .
first statement in this method gets executed, and tlle COC[e m your Malﬂ()
everything else follows from that first statement. .

method is executed FIRST.

you are here » 53

classy things

You can change your
program’s entfry point *

As long as your program has an entry point, it doesn’t

matter which class your entry point method is in, or

what that method does. Open up the program you

Do 1his!
wrote in Chapter 1, remove the Main @ethod in * Write down what ha\?\?cned
Program. cs, and create a new entry point. —

54

when You thanged the

thod name, and why you
o Go back to Program. cs and change the name of the Main method to I:inko that \,\a‘,\;ﬂ,cd.

NotMain. Now try to build and run the program. What happens?

Right—click on the

; - Pro\)ct{: in P\ro\?cr{:ics
6 Now let’s create a new entry point. Add a new class called AnotherClass. and select “Add” and

cs. You add a class to your program by right-clicking on the project name “Class..”
in the Solution Explorer and selecting “Add>>Class...”. Name your class

file AnotherClass.cs. The IDE will add a class to your program called &)
AnotherClass. Here’s the file the IDE added:

using System; These four standard using
using System.Ling; lines weve added to the file.
using System.Collections.Generic;

sing System.Text;
usng =y * This ¢lass is in the same Contatts namespate

é\—/ that the IDE added when you Fiest eveated

the Windows Aﬂ?hca{ion Yrojcc{:-

namespace Contacts
{
class AnotherClass
{
} Z;hc IDE au{;omafically named {he
) ass based op the Filcnamc,

e Add a new using line to the top of the file: using System.Windows.Forms;
Don’t forget to end the line with a semicolon!

e Add this method to the AnotherClass class by typing it in between the curly brackets:

ssageBox is a tlass that lives class AnotherClass
?:]c{hc S\/s{:cmWindows.Fo\rms {
namespace, which is why you had public static void Main()
Lo add the using line in step #3. (
S,_,-h“’o is a method that's part ‘M MessageBox.Show (“Pow!”) ;
Ehe MessageBox elass. :

}
Chapter 2

it’s all just code

% X
N@')W ryn ﬁ' \ *
” ==

So what happened?
X

Instead of popping up the Contacts application, your

program now shows this message box. When you made
Pevad the new Main () method, you gave your program a new
entry point. Now the first thing the program does is run
the statements in that method—which means running
that MessageBox. Show () statement. There’s nothing
else in that method, so once you click the OK button, the
program runs out of statements to execute and then it ends.

[

9 Figure out how to fix your program so it pops up Contacts again. Hint: \{ou on\\/ hgv . |
4o thange +wo lines in

two files to do it

_ rpen your pencil
\\ y Fill in the annotations so they describe the lines in this C# file

that they're pointing to. We've filled in the first one for you.

using System; om
using System.Ling; \mCS{'Padd"‘CH‘ods

using System.Text; other namespates ...
using System.Windows.Forms:

namespace SomeNamespace s

f W -

class MyClass { e .

public static void DoSomething () { = .. .

MessageBox.Show (“This is a message”) ;

you are here » 55

get some answers

Q: What’s with all the curly brackets?

A: C# uses curly brackets (or “braces”) to
group statements together into blocks. Curly
brackets always come in pairs. You'll only
see a closing curly bracket after you see an
opening one. The IDE helps you match up
curly brackets—just click on one, and you'll
see it and its match get shaded darker.

Q: I don’t quite get what the entry
point is. Can you explain it one more
time?

therejare no
Dumb Questions

Q; How come | get errors in the
Error List window when | try to run my
program? | thought that only happened
when | did “Build Solution.”

A: Your program has a whole lot of
statements in it, but they’re not all run at
once. The program starts with the first
statement in the program, executes it, and
then goes on to the next one, and the next
one, etc. Those statements are usually
organized into a bunch of classes. So when
you run your program, how does it know
which statement to start with?

A: Because the first thing that happens
when you choose “Start Debugging” from
the menu or press the toolbar button to
start your program running is that it saves
all the files in your solution and then tries to
compile them. And when you compile your
code—whether it's when you run it, or when
you build the solution—if there are errors,
the IDE will display them in the Error List
instead of running your program.

lot of the ervors that show up when You Com?ilc J
Your ode also show up in the Evror List window and
as ved squiggles under Your eode.

That's where the entry point comes in. The
compiler will not build your code unless there is
exactly one method called Main (), which
we call the entry point. The program starts
running with the first statementin Main ().

_ @gohdr r pencil
%_}‘W yw&lﬁion

using
using
using
using

System;
System.Ling;
System.Text;

namespace SomeNamespace

class MyClass {

(0/‘ needs a ¢lass here.

MessageBox.Show (“This is a message”) ;

Fill in the annotations so they describe the lines in this C# file
that they're pointing to. We've filled in the first one for you.

C# tlasses have these “using
lines to add methods (:‘rovn
obher namespaces:

System.Windows.Forms;

All of the eode lives in

tlasses, so the program This ¢lass has one method.

|[£s name is “DoSomc{:hing,"
and when it’s ealled it pops

AK_/ wp a Mcssachox.

public static void DoSomething () ({

This is 3 skatement.
When it's exetuted,
it pops wp 3 little

indow with 3
\:::ssagc mside of it

56 Chapter 2

it’s all just code

.. @:j% +

* WHAT'S M vrwrn:t'r

&

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

partial class Forml

{ Set properties for a label

this.BackColor = Color.DarkViolet;

Nothing—it’s a comment that the

| // This loop gets executed three times ' programmer added to explain the code

to anyone who’s reading it

partial class Forml

{

private void InitializeComponent () Disable the maximize icon (F&1) in the
title bar of the Forml window

number of pit stopsLabel.Name

= “number of pit stopsLabel”;
number of pit stopsLabel.Size

= new System.Drawing.Size (135, 17);
number of pit stopsLabel.Text

= “Number of pit stops:”;

A special kind of comment that the IDE
uses to explain what an entire block of
code does

/// <summary>

/// Bring up the picture of Rover when K
/// the button is clicked Forml window
/// </summary>

Change the background color of the

partial class Forml

{ A block of code that executes whenever

a program opens up a Forml window

this.MaximizeBox = false;

you are here » 57

exercise solution

.. ! +
* wHaT's i%j' rrwrn:t'r

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

partial class Forml

{ Set properties for a label

this.BackColor = Color.DarkViolet;

Nothing—it’s a comment that the

| // This loop gets executed three times ' programmer added to explain the code

to anyone who’s reading it

partial class Forml

{

private void InitializeComponent () Disable the maximize icon (F&1) in the
title bar of the Forml window

number of pit stopsLabel.Name
= “number of pit stopsLabel”;
number of pit stopsLabel.Size
= new System.Drawing.Size (135, 17);
number of pit stopsLabel.Text
= “Number of pit stops:”;

A special kind of comment that the IDE
uses to explain what an entire block of
code does

/// <summary>

/// Bring up the picture of Rover when
/// the button is clicked

/// </summary>

Change the background color of the
Forml window

partial class Forml
{ . A block of code that executes whenever
a program opens up a Forml window

this.MaximizeBox = false;

58 Chapter 2

it’s all just code

Two classes can be in the
same "amespace SomeClasses.cs

Take a look at these two class files from a
program called PetFiler2. They’ve got
three classes: a Dog class, a Cat class, and
a Fish class. Since they’re all in the same
PetFiler2 namespace, statements in the class Dog {
Dog.Bark () method can call Cat .Meow ()
and Fish.Swim (). It doesn’t matter how public void Bark() ({
the various namespaces and classes are divided

. statements go here
up between files. They still act the same when /1 g
they’re run.

namespace PetFiler2 ({

When a tlass is “public
it means every other }
tlass in the program £an

secess iks methods: partial)class Cat {

public void Meow () {

MoreClasses.cs // more statements

namespace PetFiler2 {

class Fish {

public void Swim() {
// statements

Sinte these ¢lasses are in the same namespate,
they can all “see” eath other—even though
they've in diffevent files. A elass can span
mulfiylc ‘pilcs ‘{:oo, but You need to use the
partial keyword when you declave it.

f

You tan only split a elass up into diffevent
files if you use the partial keyword. You

onbabl\/ won't do that in any of the code
You write in this book, but the |DE used it
1o split your form up into two files, Forml.

¢s and Forml .Dcsigv\cr.cs.

Partial) class Cat {

public void Purr() ({
// statements

There’s more to namespaces and class declarations, but you
won’t need them for the work you’re doing right now. Flip to #2
in the “Leftovers” appendix to read more.

you are here » 59

your mileage may

Your programs use variables to work with data

When you get right down to it, every program is basically a data cruncher.
Sometimes the data is in the form of a document, or an image in a

video game, or an instant message. But it’s all just data. And that’s where
variables come in. A variable is what your program uses to store data.

Are you
already
familiar with

Watch lf’ another

language?

Peclare your variables

Whenever you declare a variable, you tell your program its type and its name.
Once C# knows your variable’s type, it’ll keep your program from compiling
if you make a mistake and try to do something that doesn’t make sense, like
subtract “Fido” from 48353.

If so, you might find a few
things in this chapter seem
really familiar. Still, it's worth
taking the time to run through
the exercises anyway,
because there may be a few
ways that C# is different from
what you’re used to.

Thcsc are the names

e dypes
the vaviable TY¥ £ these Variables.

These ave

Lint maxWeight; k/)
string message;
bool boxChecked

Thcsc names are for \/OM
Like methods and tlasses, use
names that make sense and

destvibe the vaviable's usage-

CH# uses the variable {

‘{:o dc'pmc wbaf da{:a {:
variables an hold.

YPe

hese

Variables vary

A variable is equal to different values at different times while your
program runs. In other words, a variable’s value varies. (Which is

why “variable” is such a good name.) This is really important, because
that idea is at the core of every program that you’ve written or will ever
write. So if your program sets the variable myHeight equal to 63:

int myHeight = 63;

any time myHeight appears in the code, C# will replace it with its
value, 63. Then, later on, if you change its value to 12:

myHeight = 12;

C# will replace myHeight with 12—but the variable 1s still called
myHeight.

60

Whenever your
program needs to
work with numloers,
text, true/false
values, or any other
kind of data, you'll
use variables to kee
track of them.

You have to assign values to variables
before you use them

Try putting these statements into a C# program:

int z;

MessageBox.Show (“The answer is ” + z);

Go ahead, give it a shot. You’ll get an error, and the IDE will
refuse to compile your code. That’s because the compiler
checks each variable to make sure that you’ve assigned it a
value before you use it. The easiest way to make sure you
don’t forget to assign your variables values is to combine

the statement that declares a variable with a statement that
assigns its value:

Each detlaration has a type,

exactly like befove.

A few useful types

Every variable has a type that tells C# what kind of data it can
hold. We’ll go into a lot of detail about the many different types
in C# in Chapter 4. In the meantime, we’ll concentrate on the

These values
ave assigned to
the vaviables.

three most popular types. int holds integers (or whole numbers),

string holds text, and bool holds Boolean true/false values.

var-i-a-ble, adjective.
able to be changed or adapted.
The dnll’s variable speed bit let
Bob change the drill speed JSrom slow
to fast based on the job he had to do.

it’s all just code

I you write code
that uses a variable
that hasn't been
assigned a value,
your code won't
c0mpile. It's easy

to avoid that error
lay coml)ining your
variable declaration
and assignment into a
single statement.

|

Once You've assigned 3 value
to your variable, that value
cf;n thange. So theye’s ho
dnsadvan'l:agc) assigning a
variable an initial value when
You de¢lave it.

you are here » 61

operators are standing by

C# uses familiar math symbols T e

Once you've got some data stored in a variable, what can you
do with it? Well, if it’s a number, you’ll probably want to add,
subtract, multiply, or divide it. And that’s where operators come

word “string” almost
always means a string of
text, and “int” is almost
always short for integer.

in. You already know the basic ones. Let’s talk about a few more.
Here’s a block of code that uses operators to do some simple math:

The thivd statement ¢hanges the

d i = . value of number, setting it equal to
‘.ﬁ fﬁﬁfii& Z-,n"fJ' int number = 15; 3b times 15, whith is 540. Then it
pumber and set it to) number = number + 10; vesets it again, setting it equal to
15. Then we added 10 12 = (42 / D), whieh is b.

1o it. After the second number
statement, number is number

36 * 15;
12 - (42 / 7);

equal to 25 This opevator is a little diffevent.
number += 10; = += means take the value of number
o . and add 10 to it Sinte number is .
The *= opevator ﬁ number *= 3; curvently equal to b, adding 10 to it
exctept it multiplies L .)
the curvent Valﬁc of M No!.rvv.‘a“\/, g/ .leIdCd E)\/ 3 is Z%.bbébb{;_._, But when you've
number by 3, so it dividing two ints, You I a|wa\/s get an int vesult, so 23.6bb_..
ends up sZJc b 4. int count = 0; 9¢bs truncated 0 23.
count ++; \/ou,“ use int a lot for coun‘[',ing, and when You do, the ++
This MessageBox and —— opevators tome in handy. ++ intrements tount
will pop up a box count --; b\/ adding one to the value, and —— detrements tount b\/
that says “hello subtratting one from it, so it ends up equal to zevo.
again hello”

string result = “hello”;

result += “ again ” + result; & When youuse the + opevator
with a S{\ring, it just ?u‘{',s
MessageBox.Show (result) ; two strings together. [l

The W an CM\’{'«\/ s{r'mg. « . . au‘{;oma'{:'lcall\/ COhVCY"{:
£ has no thavatters. result = “the value is: + count; | ,..4 strings for You-

(H’,’s kind O‘c like a zevo

for adding strings.
A bool stores true

)\.—~>result = “;

or falsc. The ’ bool yesNo = false; R :

opevator means NOT.

[£ flips true o bool anotherBool = true;
Lalse, and vice vevsa.

62

Don’t worry about
memorizing these
operators now.

_)_7 yesNo = 'anotherBool;
: You’ll get to know them
. because you’ll see "em over and over again.

Use the debugger to see your variables change

The debugger is a great tool for understanding how your programs
work. You can use it to see the code on the previous page in action.

o Create a new Windows Forms Application project

page. Then take a look at the comments in the screenshot below:

Feiml.es

—

Drag a button onto your form and double-click it. Enter all of the code on the previous

| “Chapter2_Code Form

= | a¥huttonl_Chckiohject sender, Fventhrgs &)

{

r

r

f

I

counbed;
eount--;

£ choose "Expression:

numher 4= 133
number %= 3
mumber = 71 / 3;

int count = @

string result = “"hello”;
result 4=
Messageiion . Show(result);
result = “the walue ji: ~
result = °7;

bool yesNo = false;
ool anctherfiool = true;
yrsho = !anotherBaal;

Tprivate wold buttanl Click{sbirct sender, Fuentargs e)

/4 Here's a grest way bo use the IDE to see how this code worksl

from the menu. The bottom
f4 the IDE chould change to the Watche: window, and there chould be a line in that

£ window far “mmbher™. Step through the program line by line using Step Over (F18).
£ You can see the value of the “number” wariasble change as you go!

£ Da the same far the count, result, yesNa, and anathersiaal variahles.

@ [int_nunbrer - 15;]

numher = pasher « 1087
number = 3G % 1%
mumber = 12 - (42 F 7h;

When You set a break

£ First, create a néw project in the IDE add a button. Mext, double-click on the
£ butlon o the IDE adds a buttonl_Click wethod o your program. Fill in that
{f method with all of the code, starting with “int number = 15;%.

£ Now put a breakpoint on the first Line by right-clicking on it and choosing
r ‘Rrr'nh:rmi.ﬂt »» Imsert Ftr'u‘ﬂl:pn{nr". The line should turn eed.

£f Next, start debugging your program. You"ll see it break on the line where you
I inserted the breakpeint. Your program's just poused! IF weu click the Aun
£ toolbar button (or hit F5), it will continue. Right-click on “number” and

panel in

Poin'(: on a line

tode, the line furns red and 3
ved dot appears in the margin of

the code editor.

When You dcbug

running it inside

Your tode by
{"'C IDE, as

soon as Your Program hits g

.breakroinf itll pause and let You
inspect and changc the values of

all the vaviables.

e Insert a breakpoint on the first line of code
Right-click on the first line of code (int number = 15;)and choose “Insert Breakpoint” from the
Breakpoint menu. (You can also click on it and choose Debug >> Toggle Breakpoint or press I'9.)

it’s all just code

X

Debug this!

*

Creating a new
Windows Forms
AP?lica'{:iov\ P\roJCC‘E
will tell the [DE +o
treate a new project
with a blank form
and an entry point.
You might want +o
name it somc{:hing like
“Chapter 2 program
l"——\/ou'“ be building a
whole lot of Programs
‘Ehroughou{: the book.

Comments (whith either
start with two or move
slashes or are survounded
by /% and */ marks)
show up in the [DE as
green text. You don't
have to worry about
what you type in between
those marks, because
tomments are always
ignored by the compiler.

Flip the page and keep going!

you are here » 63

stop bugging me!
e Start debugging your program

Run your program in the debugger by clicking the Start Debugging button
(or by pressing I'5, or by choosing Debug >> Start Debugging from the
menu). Your program should start up as usual and pop up the form.

e Click on the button to trigger the breakpoint

As soon as your program gets to the line of code that has the breakpoint,
the IDE automatically brings up the code editor and highlights the current
line of code in yellow.

=] int numbcr = 15;
number = number + 18;
number = 36 * 15;
number = 12 - (42 / 7)
number += 18;
number *- 2;
number- = 71 F 3;

Add a watch for the number variable

Right-click on the number variable (any occurrence of it will do!) and
choose Expression: ‘number’ >> Add Watch from the menu. The
Watch window should appear in the panel at the bottom of the IDE:

Watch
Mame

Valus

1]

n Frrar List BH Locals 8

Step through the code

Press F10 to step through the code. (You can also choose Debug >> Step Over
from the menu, or click the Step Over button in the Debug toolbar.) The current
line of code will be executed, setting the value of number to 15. The next line of
code will then be highlighted in yellow, and the Watch window will be updated:

Watch bl =
Mame Valus Type -
number 15 int
As soon as the number
vaviable gets a new / I
Val!AC (,;)’ I‘tS Wa'tdh is n n Frrar List BH Locals 8

u?da‘&d

%)

Continue running the program
When you want to resume, just press I'5 (or Debug >> Continue), and the

program will resume running as usual.

64 Chapter 2

You tan also hover over

a vaviable while you've
debugaing to see its value
displayed in a tooltip...and
You £an Ppin it so it says oFcn!

Ac[c[ing a watch
can lnelp you
]cee]o track of
the values of
the variables in
your program.
This will really
come in Lanc[y
when your
programs get
more cmnplex.

it’s all just code

Loops perform an action over and over g Tip: Brackets

If your brackets (or braces—either name
will do) don’t match up, your program
won't build, which leads to frustrating
bugs. Luckily, the IDE can help with this!
Put your cursor on a bracket, and the
IDE highlights its match:

Here’s a peculiar thing about most large programs: they almost always
involve doing certain things over and over again. And that’s what
loops are for—they tell your program to keep executing a certain set
of statements as long as some condition is €rude (or falsel).

bool test;
while (x > 5) That's a big part of why while (- true)
booleans are so important. A { kest
| oo bt o (:igwc // Contents of the loop
out if it should keep looping:)

X =x - 3;

In a while loop, all of Every for loop has three statements. The fiest sets

the statements inside up the loop. The statement will keep looping as long as

the eurly brackets get the second one is true. And the third statement gets
exetuted as long as exetuted after eath time through the loop.

the condition in the <N~ —A
Parentheses is true. for (int i = 0; 1 < 8; i =1+ 2)

{
MessageBox.Show (“I’'1l1l pop up 4 times”);

}

Use a code snippet to write simple for loops

Press tab to 9et the cursor
You’ll be typing for loops in just a minute, and the IDE can help to Jump 4o the lehg'l:h. The
speed up your coding a little. Type for followed by two tabs, number of Limes this loop vuns
and the IDE will automatically insert code for you. If you type is determined by whatever
a new variable, it’ll automatically update the rest of the snippet. you set lenath to. You ¢an
Press tab again, and the cursor will jump to the length. Chanac la\aﬂ\ 1o a number or 3
variable.

for (int i

£ you change the variable to 1
something else, the snippet

automatically ehanges the
other two otturventes of it }

8; i < length; i++)

you are here » 65

ready, set, code!

Time to start coding — Afew helplu] tips —

% Don't forget that all your statements need
The real work of any program is in its statements. But to end in a semicolon:

statements don’t exist in a vacuum. So let’s set the stage
for digging in and getting some code written. Create a
new Windows Forms Application project. ®* You can add comments to your code by
starting them with two slashes:

* * // this text is ignored

% \Variables are declared with a name and a

name = “Joe”;

Buﬂd ﬂﬁs f@pm (B e 1o ctast coding Lo | [type (there are plenty of types that you'll
AT_(_/_/_/ learn about in Chapter 4):
x D — ——
— // weight is an integer
7) [N owonz g g

% The code for a class or a method goes
between curly braces:

public void Go() {
// your code here

}
% Most of the time, extra whitespace is fine:
int j = 1234 ;
is the same as:

Add statements to show a message

Get started by double-clicking on the first button. Then add
these statements to the buttonl Click () method. Look
closely at the code and the output it produces.

int § = 1234;

_
xis @ va‘riab\& The “"\,{1 private void buttonl Click(object sender, EventArgs e)
its
part tells CH# that t {

Theve’ gL
an \n{ZCSC"' and the vest ere’s a built—in

tlass called

of th {‘,a{:Can{: sets // this is a comment Math, and it’s 50{; a member
) € o3 string name = “Quentin”; talled Pl. Math lives in the
its value : K—/_ﬁ int @)= 3; System namespate, so the
, w ‘(’\i,c this Code tame “"rom
= x =x * 17; needs o have 3 usin System:
double d = Math.PI / 2; line at the top. S Systeny

MessageBox.Show (“name is “ + name

name is Quentin “ . w
xik 51 Fonx ds 4 ox

d is 1.5707963267349 + ™\nd is “ + d);

The \n is an estape seauence

E to add a line break +o Fhe
message box.

66 Chapter 2

it’s all just code

if/else statements make decisions

Use if/ else statements to tell your program to do certain
things only when the conditions you set up are (or aren’t)
true. A lot of if/else statements check if two things are equal.
That’s when you use the == operator. That’s different from the
single equals sign (=) operator, which you use to set a value.

Every i statement

s{—,arks with 3
if (someValue == 24) tonditional test

| The statement 'ms'\d.c
the Cur\\/ bratkets is
MessageBox.Show (“The value was 24."); (_\ e e oy e
‘hcs{: is true.
! gns +o thetk i

Always use two equals si e obher.

£wo things ave equal to ¢

if (someValue % 24)
if/else statements ave {

ightforward.
\’ECE:Y Zﬁ:j:%t‘i;rw ’ // You can have as many statements
'iwt.fs brue, the // as you want inside the brackets
\’L:E"a"‘ Zt:t:,;thihc MessageBox.Show (“'The value was 24.");
s emen

fiest set of bratkets. } else {

Otherwise, it exetutes

fhe statements between MessageBox.Show (“The value wasn’'t 24.7);
4he setond set. &/}—%

Don’t confuse the two equals sign operators!

You use one equals sign (=) to set a variable’s value, but two equals

Watc}l lf' signs (==) to compare two variables. You won’t believe how many bugs in

. * programs—even ones made by experienced programmers!—are caused
by using = instead of ==. If you see the IDE complain that you “cannot implicitly
convert type ‘int’to ‘bool”, that's probably what happened.

you are here » 67

the things you can do

Set up conditions and see if theyte true

Use if/ else statements to tell your program to do certain
things only when the conditions you set up are (or aren’t) true.

Use logical operators to check conditions

You've just looked at the == operator, which you use to test whether two
variables are equal. There are a few other operators, too. Don’t worry about
memorizing them right now—you’ll get to know them over the next few

chapters.

* The != operator works a lot like ==, except it’s true if the two things

you’re comparing are not equal.

* You can use > and < to compare numbers and see if one is bigger or

smaller than the other.

When you use
a conditional
oPerator to
compare two
numbers, it's

called a

conditional test.

% The ==, !=, > and < operators are called conditional operators.

When you use them to test two variables or values, it’s called
performing a conditional test.

% You can combine individual conditional tests into one long test using
the && operator for AND and the | | operator for OR. So to check if

iequals3orjislessthan5,do (1 == 3) || (j < 5).

Set a variable and then check its value

Here’s the code for the second button. It’s an if/else statement that
checks an integer variable called x to see if it’s equal to 10.

Make sure you stop Your program before
You do this—the [DE won't let you edit
the tode while the program'’s Yunhing,
You ¢an stop it by tlosing the window,
using the s{:o\? button on the toolbar, or
seleeting “Stop chu%ing" £rom the

chug menu.

private void button2 Click(object sender, EventArgs e)

{

int x = 5;
Firs{: we set if (x ==10)
uP a vaviable ¢
talled % and MessageBox.Show (“x must be 107);
make it equal (}else
t0 5. Then we {
theek i‘c it’s MessageBox.Show (“x isn’t 10”);
equal to 10. }

Xisn't 10

OK l

68 Chapter 2

Here’s the output. See if you can tweak one line
of code and get it to say “x must be 10” instead.

it’s all just code

Add another conditional test

The third button makes this output. Now make a change to

This line thetks someValue to
two lines of code so that it pops up both message boxes.

see if it's equal to 3, and then
it ehecks to make sure name

is “\)oc"-
ﬁ private void button3 Click(object sender, EventArgs e)
{
int someValue = 4;
thes ine runs nn matter what .
string name = “Bobbo Jr.”;
if ((someValue == 3) && (name == “Joe”)) <
{

MessageBox.Show (“x is 3 and the name is Joe”);

}

MessageBox.Show (“this line runs no matter what”);

Add loops to your program

Here’s the code for the last button. It’s got two loops. The first is a while loop,
which repeats the statements inside the brackets as long as the condition is true—do
something while this is true. The second one is a £or loop. Take a look and see how it

works.
private void button4 Click(object sender, EventArgs e)
{ .
This loop k tnt count = 0; The setond part of the for s{;a{:mcr{ usthan
o.o eeps L |t says “Lor as \on5 as i ;.s ess
Z;{:cifm?tas I?hl?l as while (count < 10) ?::c{f;c |oo? sZou\d kcc\’ on go\V\S, .‘:n\;‘ {-:ks
is Icssozzanviga : { count = count + 1; is run bc‘(:orc the tode b\o(;t,.avf Jf; ¢ olo
. } is exetuted only if the test is true
This sets up the loop- for ' AL This statement oets c*ct“t.c ¢ afe
H; \)us{', ass'lghs a count = count - 1: the end o{: eath loo\7. |n.{',\'\ls+;a)
value to the ih{csﬂ } it adds one toi CVCY‘.\I time {::
that'll be used in it. loop exetutes. 'l:his is .ca"ct . a{i\
MessageBox.Show (“The answer is ” + count); iterator, and it's vun ‘%\/
J after all the statements in the
tode block.

Before you click on the button, read through the code and try to figure out what the
message box will show. Then click the button and see if you were right! * 5‘5

you are here » 69

over and over and over and...

Let’s get a little more practice with conditional tests and loops. Take a
look at the code below. Circle the conditional tests, and fill in the blanks
so that the comments correctly describe the code that’s being run.

int result = 0; // this variable will hold the final result We filled in the

SC{‘, 'l‘{‘, {‘,o b {__/ ‘("irs{: one ‘cor you.

int x = 6; // declare a variable x and

while (x > 3) {

// execute these statements as long as

result = result + x; // add x

x =x - 1; // subtract

}

for (int z=1; z< 3; z=2z + 1) {
// start the 1oop bY |
// keep looping as 1ONg @S

result = result + z; // e
}
// The next statement will pop up a message box that says
DL oo

MessageBox.Show (“The result is ” + result);

Move about tonditional tests

You tan do simple conditional tests by theeking the value of a variable
using 8 Comparison operator. Here's how you compare two ints, x and y:
X < y (less than)

X > y (greater than)
X ==y (equals—and yes, with two equals signs)

These are the ones you'll use most often.

70 Chapter 2

it’s all just code

Wait up! There's a flaw in your
logic. What happens to my loop if T
write a conditional test that never
becomes false?

Then your loop runs forever!

Every time your program runs a conditional test, the result
is either true or false. If it’s true, then your program
gocs through the loop one more time. Every loop should
have code that, if it’s run enough times, should cause

the conditional test to eventually return false. But if it
doesn’t, then the loop will keep running until you kill the
es talled an infinite \oo;\’,
atkually times when you
ein ‘I°“" \wo%vam.

program or turn the computer off!

This is somefim
and theve ave
wah‘t {7° use on

Here are a few loops. Write down if each loop will repeat forever or
eventually end. If it's going to end, how many times will it loop?

Loop #1 Loop #3 Loop #5
int count = 5; int j = 2; int p = 2;
while (count > 0) { for (int 1 = 1; 1 < 100; for (int q = 2; g < 32;
count = count * 3; i=1*2) g=q * 2)
count = count * -1; { . ' . {
} For Loop #3, how/_>j -] _Il" while (p < q)
many Limes will this while (J < 25) {
statement be exetuted? { . . b—p * 2;
Loop #2 } =3 }
}nt i= O,_ . } For Loo?#g, how ——> 94 =P 7
int count = 2; many Limes will Ehis }
while (1 == 0) { hatoment be exetobed? Hinks o st
count = count * 3; Loop #4 et Be S 2."‘_,_'“1; a;f:;:’t;ﬁﬁl JOO
count = count * -1; while (true) { int i = 1;} iterator “a\:q*z“ i:

exetuted.

1

Rcmcmbcr, a -Fo!r loo? alwa)'s
vuns the tonditional test at the
beginning of the blotk, and the

itevator at the end of the block.

_ @?v:m«
‘P QWEWR
Can you think of a reason that you’d want to write a

loop that never stops running? (Hint: You'll use one
in Chapter 13....)

you are here »

7

if only, but only if

harpen your penci
B &Iutmn Let’s get a little more practice with conditional tests and loops. Take a
look at the code below. Circle the conditional tests, and fill in the blanks

so that the comments correctly describe the code that’s being run.

int result = 0; // this variable will hold the final result

int x = 6; // declare a variable x and SC‘[', i‘t ‘lZO b

while > 3) {

result = result + x; // add x 40 the vesult vaviable

x =x - 1; // subtract | 1crom {:hc value O‘F b3

} This loop vuns twice—Fivst with z set 4o |, and
- ék_\ then a setond time with z set 4o 2. Onte it hits
for (int z = 1; @ z =1z + 1) { 3, it's no longcr less than 3, so the loop stops.
// start the loop by dcclaring a variable z and SCH‘,ing it to |

// keep looping as long as 2 iS less than 3

// after each loop, add | o =

result = result + z; // add ‘Ehc value o‘(: z ‘Eo \rcsuH',

}

MessageBox.Show (“"The result is ” + result);

- harpen Your pencil

sallltl n Here are a few loops. Write down if each loop will repeat forever or

0 eventually end. If it's going to end, how many times will it loop?

Loop #1 Loop #3 Loop #5

This loop executes once This loop executes 7 times This loop
executes 8 times

Loop #2 Loop #4

This loop runs forever Another infinite loop

Take the time 4o veally figure this one out. Heve's a perfect opportunity fo try out the debugger on your ownl Set a
brcak?oin‘f‘, on the statement 92=P-9 Add watehes for the vaviables p and Q and S{:c\? ‘{‘)\vough the |oo\>-

72 Chapter 2

therejare no
b Questions

Dum

Q- Is every statement always in a class?

A: Yes. Any time a C# program does something, it's because
statements were executed. Those statements are a part of classes,
and those classes are a part of namespaces. Even when it looks
like something is not a statement in a class—like when you use
the designer to set a property on an object on your form—if you
search through your code you'll find that the IDE added or changed
statements inside a class somewhere.

Q: Are there any namespaces I'm not allowed to use? Are
there any | have to use?

A: Yes, there are a few namespaces that are not recommended to
use. Notice how all of the using lines at the top of your C# class
files always said Sy stem? That's because there’'s a System
namespace that's used by the .NET Framework. It's where you

find all of your important tools to add power to your programs, like
System. Data, which lets you work with tables and databases,
and System. IO, which lets you work with files and data streams.
But for the most part, you can choose any name you want for a
namespace (as long as it only has letters, numbers, and underscores).
When you create a new program, the IDE will automatically choose a
namespace for you based on the program’s name.

Q: I still don’t get why I need this partial class stuff.

A: Partial classes are how you can spread the code for one

class between more than one file. The IDE does that when it

creates a form—it keeps the code you edit in one file (like Form1 .
cs), and the code it modifies automatically for you in another file
(Forml .Designer.cs). Youdon't need to do that with a
namespace, though. One namespace can span two, three, or a
dozen or more files. Just put the namespace declaration at the top of
the file, and everything within the curly brackets after the declaration
is inside the same namespace. One more thing: you can have more
than one class in a file. And you can have more than one namespace

in a file. You'll learn a lot more about classes in the next few chapters.

Q: Let’s say | drag something onto my form, so the IDE
generates a bunch of code automatically. What happens to that
code if I click “Undo”?

A: The best way to answer this question is to try it! Give it a shot—
do something where the IDE generates some code for you.

QBUI.I.ET POINTS

it’s all code

Drag a button on a form, change properties. Then try to undo it. What
happens? Well, for simple things you'll see that the IDE is smart
enough to undo it itself. But for more complex things, like adding

a new SQL database to your project, you'll be given a warning
message. It still knows how to undo the action, but it may not be able
to redo it.

Q,: So exactly how careful do | have to be with the code that’s
automatically generated by the IDE?

A: You should generally be pretty careful. It's really useful to
know what the IDE is doing to your code, and once in a while you'll
need to know what's in there in order to solve a serious problem. But
in almost all cases, you'll be able to do everything you need to do
through the IDE.

= You tell your program to perform actions using
statements. Statements are always part of classes, and
every class is in a namespace.

m Every statement ends with a semicolon (;).

m When you use the visual tools in the Visual Studio IDE,
it automatically adds or changes code in your program.

m Code blocks are surrounded by curly braces { }.
Classes, while loops, iffelse statements, and lots of
other kinds of statements use those blocks.

m Aconditional test is either true or false. You use
conditional tests to determine when a loop ends, and
which block of code to execute in an if/else statement.

= Any time your program needs to store some data, you
use a variable. Use = to assign a variable, and == to
test if two variables are equal.

m Awhile loop runs everything within its block (defined
by curly braces) as long as the conditional test is
true.

m Ifthe conditional testis false, the while loop code
block won't run, and execution will move down to the
code immediately after the loop block.

73

your code... now in magnet form

Code Magnets

Part of a C# program is all scrambled up on the fridge. Can you rearrange
the code snippets to make a working C# program that produces the
message box? Some of the curly braces fell on the floor and they were
too small to pick up, so feel free to add as many of those as you need!
(Hint: you'll definitely need to add a couple. Just write them in!)

The “ is an em?{\/ s-{:\ring-—i‘[‘, means Result

has no ¢thavacters in it yet. /

w This magnet didn't fall

\ string Result = "7; ' off the fridge..

if (x == 2) {
Result = Result + “b c¢”;

}

if (x> 2) |

Result = Result + “a”;

int x = 3;

’

Output:

I MessageBox . Show (Result) ; '

74 Chapter 2

—> Answers on page 82.

it’s all just code

e You)“ be Crca{:ing a lot of awlida'{:ions

We'll give you a lot of exereises like this throughout the book. throughout this book, and you'l need 4o give

we'll 3ivc You the answeyr in a COuPlc o«c pages. H: You 5e{; s{:uck, eath one a diffchh.{: name. We vecommend

don't be afraid +o peek at the answer—it's not theating/ naming this one “2Z Fun with if—else

statements” based on the chapter number

and the text in the title bar of the form.

Time to get some practice using if/else statements. Can you build this program?
>
ExerciSe
Here’s the form.
Add this checkbox.
Drag it out of the toolbox and onto your

form. Use the Text property to change the
text that’s next to it. (You also use the Text

r- "

o' Fun with iffelse statements!

&aggfi;h;;ﬂf;gthe l Enable color changing

This is a label.
You can use the properties to change the
font size and make it boldface. Use the

“Red” from the selection of web colors.

Pop up this message if the user clicks the button but the
box IS NOT checked.

property to change the button and label text.)

BackColor property to set to red—choose

If your checkbox is named checkBox1 (you can change the Name property
if you want), then here’s the conditional test to see if it’s checked:

bt

checkBoxl.Checked == true Thie bex it ot ehecked

If the user clicks the button and the box IS checked, change the

background color of the label.
If the label background color is red, change it to blue when the button 1s clicked. If it’s blue,
change 1t back to red. Here’s a statement that sets the background color of a label called 1abell:

labell .BackColor = Color.Red;

(Hint: The conditional test to check whether a label’s background color is red looks a lot like that
statement—>but with one important difference!)

you are here »

75

ooh, pretty!

Let’s build something flashy! Start by creating a new Windows Forms Application in the IDE.
Exercise

o Here's the form to build o

6 FlashyThing! (el e

. 1 | V S| ‘(O‘ loo?—“(o‘ (|V\£ L = 0; ..)‘thch
‘ "\t l‘(ou dCL‘a e d av lab‘c m dc a
‘t\\a‘{: vav lab‘c S OY\‘1 Va“d "\5|dc {:\ic loov s Lur ‘\, b\ aCkc E SO |‘(10U \\GVC

i || either detlave it in eath
that both use the vaviable, you . . :
e f:»}:f Sonc dccl‘;va{jon outside the loop- And if the vaviable ¢ is

o d outside of the loops, Yyou cant use it in either one.

alveady detlare

e Make the form background go all psychedelic!
When the button’s clicked, make the form’s background
color cycle through a whole lot of colors! Create a loop that
has a variable ¢ go from 0 to 253. Here’s the block of code
that goes inside the curly brackets:

this.BackColor = Color.FromArgb(c, 255 - ¢, c);

Application.DoEvents () ; 6—>
This line tells

'l:he Proaram +o s{;o . YCSSC
. P Your loop mom ; m
:ti::frlf:kfh'.as it nccds.'l:o do, like rc‘FrcsE {::c }:t: ,Zhizs f:r CO\O‘. me Y dc‘c'mCd
The form d;:sh,;t Z—:Zrﬁakl-ﬁ Tsz{:his line and seeing what happens NET has 3 bunth of é‘; buk it 30
Wi R L. : o)
done before it desls il {;h:sclc‘,:fifc it's waiting until the loop is tolors \ike B\:“e\’:,“: own tolovs usc:\?)
ow make -hhod» \I
For now, you'll use Application DoEvents() to make sure \:;} \(’: oov From op0) w\C’ 5 ved valve:
Your Lorm s{:a\/s vesponsive while it's in a loop, but it's & ind Lheee v evs: ue.
kind of a hatk. You shouldn't use this code outside of a spelt v a blue Vo

{',o\/ program like this. Later on in the book, \/ou,” learn a 5"“‘“ valuer

abou{: a muth bC‘H‘.cr wa\/ {:o |c{: \/ou\r ?vog\rams do move
than one ‘[‘)\ing at a ‘[:imc,l

e Make it slower

Slow down the flashing by adding this line after the
Application.DoEvents () line:
. illisecond
- . - ent insects 3 3 mi
System.Threading.Thread.Sleep(3); This 5{'«31“'" H',’S a ?a\’{i o{l

lay in the loop- par
i\f\e \Il\}ET \\b\ra\'\l, and it's in the
System. Threading namespace:

76 Chapter 2

it’s all just code

e Make it smoother

Let’s make the colors cycle back to where they started. Add another loop that has
c go from 254 down to 0. Use the same block of code inside the curly brackets.

e Keep it going

Surround your two loops with another loop that continuously executes and doesn’t inside anothey

stop, so that when the button is pressed, the background starts changing colors and ©one, we ¢all it 3
{

then keeps doing it. (Hint: The while (true) loop will run forever!) N/ ‘nested” 'oop.

When one loop is

Uh-oh! The program doesn’t stop!

Run your program in the IDE. Start it looping. Now close the window. Wait a
minute—the IDE didn’t go back into edit mode! It’s acting like the program
1s still running. You need to actually stop the program using the square stop
button in the IDE (or select “Stop Debugging” from the Debug menu).

e Make it stop
Make the loop you added in step #5 stop when the program is
closed. Change your outer loop to this:

while (Visible)

Now run the program and click the X box in the corner. The
window closes, and then the program stops! Except...there’s a
delay of a few seconds before the IDE goes back to edit mode.

When you've theeking a Boolean value like Visible

in an if statement or a loop, sometimes it's

‘ccmytin% to test for (Visible == true). You can

leave off the ‘== Hrue"—it's enough 4o intlude

the Boolean. problem.
When you've working with a
form or tontrol, Visible is Can you figure out what’s causing that
f‘"‘fc asl !“&? _35 de‘ form or delay? Can you fix it so the program ends
ontrol is being displayed. £ immediately when you close the window?

You set it to false, it makes
the form or tontrol disappear.

“Hinfz The && opevator means
AND”. |4’ how You s{:v-ina a bunch
of tonditiong| tests fpgc{:her into
O.hC big test that’s true only if the
. ivst Lest is true AND the second
.ls]'bruc AND the third, ete. And
it'll come in handy 1o solve this

you are here » 77

exercise solution

Time to get some practice using if/else statements. Can you build this program?

Exercise

SoLution
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;

using System.Ling; Here's the tode for the form. We named our solution

us%ng System. Texts “Fun with [Else”, so the IDE made the namespace
using System.Windows.Forms; Fun__wi{:h_"c__Elsc. w You gave Your solution a

diffevent name, it'll have a diffevent namespace.

namespace Fun with If Else

{

public partial class Forml : Form
(The [DE added the method ealled
public Forml () b"tb'\l_CIiCko to Your form
(when you double—clicked on the
InitializeComponent () ; button. The method gc{:s Yun
} every time the button’s elicked.
private void buttonl Click(object sender, EventArgs e)
{ The inner if statement
if (checkBoxl.Checked == true) thetks the label’s
{ color. [£ the label
The outer if if (labell.BackColor == Color.Red) is Lu\r\rcn'{:ly ved, it
S£a£6m6hf thetks { c%cCufcsa s{a£Cmcn£
the theekbox o labell.BackColor = Color.Blue; to turn it blue.
see if it's been }
thecked. Cheek! else
{
labell.BackColor = Color.Red; This ﬂz{cmcnys
b vun if the label’s
} V§;__—__—‘—”’/,/// background tolor is
else not ved to make it
{ set back to ved.

MessageBox.Show (“The box is not checked”);

} This MessageBox. pops up if
the theckbox isn't chetked.

You can download the code for all of the exercise solutions

in this book from www.headfirstlabs.com/books/hfcsharp/

78 Chapter 2

it’s all just code

%eRCiSe
Sotution

o‘p the |05ic in

The outer loop

keeps vunning as for

|on5 as the Borm

is visible. As soon

as it’s tlosed,

Visible is false,

and the while

will S‘EOP looying.
We used £¢ /
\/]siblc ihS{Cad—ﬁ for
of ¢¢ Visible
== true. |ts
just like saying
if it's visible”
instead of “if
it's true that
it's visible”—they
mean the same

{‘,hing. }

Sometimes we won't show You the entirve code

in the solution, ius{: the bits that ¢hanged. All

he FlashyThing proieet is in +hi . But we' Lully showi
buttonl_Cliek() method Zcha‘c ?ch‘: IDE aIddI:d WI;C., for people 1o vead ode. But we've purposetully showing you

You double—clicked the button in the form designer- tode from diffevent people using diffevent styles.
private void buttonl Click(object sender, EventArgs e)

, 7while (Visible) {

Was your code a little different than ours? There's more than one way
to solve any programming prol)lem—like you could have used while looPs
instead of for looPs. If your program wor]cs, then you got the exercise right!

When the [DE added this method, it added an extra

veturn before the eurly bratket. Sometimes we'll put the
bracket on the same line like this 4o save space—but C#
doesn’t care about extra spate, so this is perfectly valid.

Let’s build something flashy!

Consistency is generally veally important to make it easy

diffevent ways, because \/ou'll need to get used to veading

(int ¢ = 0; ¢ < 254 && Visible; c++)
this.BackColor = Color.FromArgb(c, 255 - ¢, c);
Application.DoEvents () ; '\ The first for ,ooP makes the

Colors eyele one wa
System.Threading.Thread.Sleep (3); second for loop lvz;sizdffrc
m

M so 'l:ht\/ look smooth.

(int ¢ = 254; ¢ >= 0 && Visible; c—--) {

this.BackColor = Color.FromArgb(c, 255 - ¢, c);

Foptestion Bosvente 07 We fixed the extra delay by
using the ¢¢ opevator +o make
eath of the for loops also theck
Visible. That way the loop ends

as soon as Visible Lurns false.

System.Threading.Thread.Sleep(3);

Can you figure out what’s causing that
delay? Can you fix it so the program ends
immediately when you close the window?

The delay happens because the for loops need to finish before the
while loop can check if Visible is still true. You can fix it by adding
&& Visible to the conditional test in each for loop.

you are here » 79

this puzzle’s tougher than it looks

Poo] Puzzle

Your job is to take code snipptets from int x = 0;
the pool and place them into String Poem = M
the blank lines in the code. You g !
may not use the same snippet :
Y PP while () |

more than once, and you won't

need to use all the snippets.

Your goal is to make a class
that will compile and run. Don't
be fooled—this one’s harder than it

if (x < 1) {

looks. }
Output
— if) |

a noise annoys an oyster
}
if (x ==) |
}
if |) |

We included these “Pool Puzzle” exertises throughout the book
+o give Yyour brain an c%‘{:\ra——‘[:oush workout. H: \/ou'rc the kind

of person who loves twisty little logic puzzles, then you'll love }
+his one. I-F \/ou’rc not, give it a shot Ah\/wa\/—-bu{: don't be
afraid to look at the answer to figure out what's going on.
And if you've stumped by a pool puzzle, definitely move on.

Note: each snippet
from the pool can only
be used once!

x>0
x<1 X=x+1;
x> 1 X=X+2;
Xx>3 X=X -2; Poem = Poem + “noys *;
Poem=Poem+"“ ", x<4 X=x-1; Poem = Poem + “oise “;
Poem = Poem +“a”; Poem = Poem +“ oyster”;
Poem = Poem +“n*; Poem = Poem +“annoys”;

I
iy MessageBox.Show(Poem);
Poem = Poem +“an”; Poem = Poem + “noise”;

80 Chapter2 —> Answers on page 83.

Csharpeross

it’s all just code

How does a crossword help you learn C#%? Well, all the words are C#-

related and from this chapter. The clues also provide mental twists and
turns that will help you burn alternative routes to C# right into your brain.

H IEEEREEN

Across
3. You give information to a method using these

4. buttonl.Text and checkBox3.Name are examples of
8. Every statement ends with one of these

10. The name of every C# program’s entry point

11. Contains methods

12. Your code statements live in one of these

14. Akind of variable that's either true or false

15. A special method that tells your program where to start
16. This kind of class spans multiple files

Down

1. The output of a method is its value

2. system.Windows.Forms i$ an example of one of

these

5. Atiny piece of a program that does something

6. A block of code is surrounded by

7. The kind of test that tells a loop when to end

9. You can call .Show () to pop up a simple
Windows dialog box

13. The kind of variable that contains a whole number

you are here » 81

exercise solutions

Code Magnets Solution

Part of a C# program is all scrambled up on the fridge. Can you
rearrange the code snippets to make a working C# program that
produces the message box? Some of the curly braces fell on the
floor and they were too small to pick up, so feel free to add as
many of those as you need!

> =)

Result = Result + “a’;

Result = Result + w_».

if (x == 2) {

Result = Result + “b c¢”;

I MessageBox . Show (Result) ; '

This magnet. didn't £3]]

Output:

82 Chapter 2

The fivst time through the

— loo?, % is cv\ual o3 so this

Londi{'jona\ Lest will be true.

This statement makes x
/ equal 4o 2 {he fiest time

through Lhe loop, and | the
ough

setond time the

Poo] Puzzle Jolution

Your job was to take code snippets from the

pool and place them into the blank lines
in the code. Your goal was to make a
class that will compile and run.

int x = 0;
String Poem = “7;

while (X <4) {

“w_n,

Poem = Poem + “a”;
if (x < 1) {
Poem = Poem + " “;

w_ o,

Poem = Poem + "n";
if (x>1) {

.

Poem = Poem +

'U
[
\)
3
"

Poem
}

XxX=x+1;
}

MessageBox.Show(Poem);

4

Poem + “oise “;

' oyster”;

Poem + “noys “;

.

it’s all just code

Output:

, =

a noise annoys an oyster

-

Did you get a different
solution? Type it into the IDE
and see if it works! There’s
more than one correct solution

to the pool puzzle.

.

£ you want a veal ¢thallenge, see if you
tan Figwc out what it is/ Heve's a hint:
There's another solution that keeps the
word ‘c\ragmcw{;s in order.

you are here » 83

crossword solution

Csharpeross Solution

N = "M RPN =

84 Chapter 2

3 objects: get oriented!
* x
Maiing code make sense .

Husband class doesn't have a
HelpOutAroundTheHouse()
method or a PullHisOwnWeight()
method.

Every program you write solves a problem.

When you're building a program, it's always a good idea to start by thinking about what

problem your program’s supposed to solve. That's why objects are really useful. They
let you structure your code based on the problem it’s solving, so that you can spend your
time thinking about the problem you need to work on rather than getting bogged down in
the mechanics of writing code. When you use objects right, you end up with code that's

intuitive to write, and easy to read and change.

this is a new chapter

85

mike’s places

How Mike thinks about his problems

Mike’s a programmer about to head out to a job
interview. He can’t wait to show off his C# skills, but
first he has to get there—and he’s running late!

o Mike figures out the route he'll take to get to the interview.

T'll take the 31st Street
bridge, head up Liberty Avenue,
and go through Bloomfield.

&Mikc sets his destination,

then comes up with a voute.

e 6ood thing he had his radio on. There's
a huge traffic jam that'll make him late!

ke oets new This is Frank Loudly with
M‘i\:(:w?;’c\on about 3 your eye-in-the-sky shadow traffic
"‘\\—xcc{: he needs ko avoid: report. It looks like a three-car e
S

pileup on Liberty has traffic backed
up all the way to 32nd Street.

e Mike comes up with a new route to get HEE—
to his interview on time.

Now he ¢an Come up
with a new voute to

No problem. If T take
the interview. ___—>

Route 28 instead, T'll
still be on time!

86

objects: get oriented!

How Mike’s car navigation system thinks about his problems

Mike built his.own GPS navigation system, which he ?’rcrc’.s a' diagram oﬁ ; sil:;i;ss Navigator
uses to help him get around town. in Mike's program. .
fhe name on top, and the SetCurrentLocation()
methods on the bottom. SetDestination()
k_/} ModifyRoute ToAvoid()
SetDestination (“Fifth Ave & Penn Ave”); l\GAOdFi{fyROl(J)teTOIndUde()
tri te; , h etRoute
e e Here's the output grézxt ‘ GetTimeToDestination()
route = GetRoute(); éc{Rou{xo method—it's TotalDistance()

3 s{:ring that tontains the
} diveekions Mike should follow.
The navigation S\/S‘{',cn\ sets “Take 31st Street Bridge to Liberty Avenue to Bloomfield”

a destination and tomes up
with a voute.

The navigation system gets

new information about

street it needs 4o avoid. ’l
—— 100} £ yRoUteToAVOid (“Liberty Ave”);

N ik ean come WY w'\%,\\ a new
ow{:c 1o the dcs{ima{:\on.
vow

string route;

— route = GetRoute () ;

“Take Route 28 to the Highland Park Bridge to Washington Blvd”

GetRoute() gives a new voute
that doesn’t intlude the
street Mike wants o avoid.

Mike's navigation system solves the street

navigation pro]alem the same way he does.

you are here » 87

set methods and modify routes

Mike’s Navigator class has methods to set and modify rovtes

Mike’s Navigator class has methods, which are where the action happens. But unlike the
button Click () methods in the forms you've built, they’re all focused around a single
problem: navigating a route through a city. That’s why Mike stuck them together into one
class, and called that class Navigator.

Mike designed his Navigator class so that it’s easy to create and modify routes. To get a
route, Mike’s program calls the SetDestination () method to set the destination, and
then uses the GetRoute () method to put the route into a string. If he needs to change the
route,. his program calls the ModifyRouteToAvoid () method to change the route 50 that was thinking sbout how
it avoids a certain street, and then calls the GetRoute () method to get the new directions. to naviga’cc 3 voute

class Navigator { K through a eity-

Mike those method
names that would make
sense to someone who

public void SetCurrentlLocation(string locationName) { ... }
public void SetDestination(string destinationName) { ... };
public void ModifyRouteToAvoid(string streetName) { ... };
public (string)GetRoute() { ... };

} This is the return +

Pe of the m
Sfajc cmcn# talling the efRouzc()citii [means
;o9 variable that will ¢ontai, °

hat means the method doesn’t
Some wmethods have a return value

Every method is made up of statements that do things. Some methods just execute
their statements and then exit. But other methods have a return value, or a value
that’s calculated or generated inside the method, and sent back to the statement that
called that method. The type of the return value (like string or int) is called the
return type.

that the

d ean use it 4o set 3 string route =

the divettions Wi :
. Wh ')
return G"Y{Zhing. en it's V"i’: GetRoute () ;

Heve's an example of a method
£hat has a vetuen type—it
veburns an int. The method uses
the two pavameters to caleulate

The return statement tells the method to immediately exit. If your method doesn’t the vesult and uses the veturn
have a return value—which means it’s declared with a return type of void—then statement to pass the value
the return statement just ends with a semicolon, and you don’t always have to back to the statement that
have one in your method. But if the method has a return type, then it must use the called it

return statement.
public int MultiplyTwoNumbers (int firstNumber, int secondNumber) {
int result = firstNumber * secondNumber;
return result;

}

Here’s a statement that calls a method to multiply two numbers. It returns an int:

Lake values like 3 and
lso use vaviables

thod.

MC‘H\OdS tan
5. B\A{" You tan d
int myResult = MultiplyTwoNumbers (3, 5); é/ pass values to a me

88 Chapter 3

objects: get oriented!

QBUI.I.ET POINTS

m Classes have methods that contain statements that perform actions. You can design a class that is easy to use by
choosing methods that make sense.

m Some methods have a return type. You set a method’s return type in its declaration. A method with a declaration that starts
“public int”returns an int value. Here's an example of a statement that returns an int value: return 37;

m When a method has a return type, it must have a return statement that returns a value that matches a return type. So if
you've got a method that’s declared “public string”then you need a return statement that returns a string.

m Assoon as a return statementin a method executes, your program jumps back to the statement that called the method.

= Not all methods have a return type. A method with a declaration that starts “public void” doesn't return anything at
all. You can still use a return statement to exita void method: if (finishedEarly) { return; }

Use what you've learned to build a program that uses a class

Let’s hook up a form to a class, and make its button call a method inside that class. >* Do t}ll S’

o Create a new Windows Forms Application project in the IDE. Then add a class file to it called
Talker.cs by right-clicking on the project in the Solution Explorer and selecting “Class...” from
the Add menu. When you name your new class file “Talker.cs”, the IDE will automatically name
the class in the new file Talker. Then it’ll pop up the new class in a new tab inside the IDE.

e Add using System.Windows.Forms; to the top of the class file. Then add code to the class:

class Talker {
public static int BlahBlahBlah(string thingToSay, int numberOfTimes)

{

This sica‘ccmﬁ"£ 7 string finalString = “”;

declaves 3 finalString for (int count = 1; count <= numberOfTimes; count++)

Var\ab\c and sets it {

Ca\ua\ Lo an chJC\I finalString = finalString + thingToSay + “\n”;

chxing } This line of ¢ode adds the

MessageBox.Show (finalString) ;

tontents of thi i
return finalString.Length; “\ ontents ot thingToSay and a line

break (“\n”) onto the end of it +o
} The BlahBlahBlah() method’s veturn value is an the finalSvaing vaviable.
integer that has the total length of the message it .
displayed. You tan add “Length” to any string to KThis is called a property. Every string
figure out how long it is. has a property called Leng‘ch._thn .uf
caleulates the length of a string, a line
break (“\n”) counts as one tharacter.

> Fli]o the page to l(ee]o going!

you are here » 89

introducing objects

So what did you just build? *

The new class has one method called BlahBlahBlah () that takes two parameters. The first
parameter is a string that tells it something to say, and the second is the number of times to say it.
When it’s called, it pops up a message box with the message repeated a number of times. Its return
value is the length of the string. The method needs a string for its thingToSay parameter and a
number for its numberOfTimes parameter. It'll get those parameters from a form that lets the user
enter text using a TextBox control and a number using NumericUpDown control.

Now add a form that uses your new class!

Set the default text of _
the TextBox to “Uello/” | o falker Ieslser\ 4 M
using its Text property. St Hdblv
ofimee: |3 :
[spesktomet |

6 Make your project’s form look like this. >

T
Then double-click on the button and have it run this code that calls BlahBlahBlah () and assigns its return
value to an integer called len: This is a NumerieUpDown eontrol.
Set its Minimum Propcr-{;\/ to I, its
Maximum ProPcr-{;\/ +o 10, and its
Value property to 3.

int len = Talker.BlahBlahBlah (textBoxl.Text, (int)numericUpDownl.Value);
MessageBox.Show (“"The message length is ” + len);

private void buttonl Click(object sender, EventArgs e)

{

e Now run your program! Click the button and watch it pop up two
message boxes. The class pops up the first message box, and the

form pops up the second one. w0 e

When the
The BlahBlahBlah() method . method veturns
pops up this message box i a value, the form Themessageengthis 21

based on what's in its Hello! PoPs it up in this
parameters. _j} message box. \72

m—
| QK

*

R
You can add a class to your project and share
its methods with the other classes in the]oroject.

90 Chapter 3

objects: get oriented!

It'd be great if I
could compare a few

routes and figure out
which is fastest....

Mike gets an idea | P °o

The interview went great! But the traffic ,,‘.A
jam this morning got Mike thinking about
how he could improve his navigator.

He could create three different Navigator classes...

Mike could copy the Navigator class code and paste it into two more
classes. Then his program could store three routes at once.

This box is a tlass diagram. [€ lists

all of the methods in @ tlass, and
it’s an easy way to see everything

Navigator otk it does 3k a alance.
SetDestination() Navigator2 l
ModifyRoute ToAvoid() V19 |
ModifyRouteTolnclude() SetDestination() -

GetRoute() ModifyRouteToAvoid() N?V'Qat°"3 |
GetTimeToDestination() ModifyRouteTolnclude() SetDestination()
TotalDistance() GetRoute() Mod!fyRouteToAvmd()
GetTimeToDestination() ModifyRouteTolnclude()
TotalDistance() GetRoute()
GetTimeToDestination()

TotalDistance()

Whoa, that can't be right!
What if T want to change a
method? Then I need to go
back and fix it in three places.

Right! Maintaining three copies of the same code
is really messy. A lot of problems you need to solve need a
way to represent one thing a bunch of different times. In this case,
it’s a bunch of routes. But it could be a bunch of turbines, or dogs,
or music files, or anything. All of those programs have one thing in
common: they always need to treat the same kind of thing in the
same way, no matter how many of the thing they’re dealing with.

you are here » 91

for instance...

Mike can use objects to solve his problem

Objects are C#’s tool that you use to work with
a bunch of similar things. Mike can use objects
to program his Navigator class just once, but
use it as many times as he wants in a program.

igakor ¢12ss Navigator

. am- 1T Y SetCurrentLocation()
n M\\Lc s \7Y°‘5‘(‘\:\\3‘\3 3 o
. \n{, g w5t SetDestination()
Navigater obyet ModifyRoute ToAvoid()

ModifyRouteToInclude()
K_ﬁ GetRoute()
GetTimeToDestination()

TotalDistance()

Mike needed to compare
three different voutes
at onte, so he used

All you need to create an o Ehren Nomar v58
object is the new keyword ?N\/) JCYJZ:C :;vuza Jc'r objects
m ime.

and the name of a class.

Navigator navigatorl =(new)Navigator() ;
navigatorl.SetDestination (“Fifth Ave & Penn Ave”);
string route;

route =<§avigatorff§etRoute()

Now you can use the object! When you
create an object from a class, that object
has all of the methods from that class.

92 Chapter 3

objects: get oriented!

You use a class to build an object

A class is like a blueprint for an object. If you wanted to build
five identical houses in a suburban housing development, you
wouldn’t ask an architect to draw up five identical sets of
blueprints. You’d just use one blueprint to build five houses.

When you define a ¢tlass, you define
its methods, just like a blueprint
defines the layout of the house.

You £an use one bluc?rin{: to
make any number of houses,
and You tan use one ¢tlass o
make any number o‘(" ob\)cd:s.

—

An object gets its methods from its class

Once you build a class, you can create as many objects as you want from
it using the new statement. When you do, every method in your class
becomes part of the object.

House

GiveShelter()
GrowLawn()
- MailDelivered()

38 Pine ClogDrainPipes()
Street AccruePropertyTaxes()
NeedRepairs()

you are here » 93

objects improve your code

When you create a new object from a class,

its called an instance of that class

Guess what...you already know this stuff! Everything in the toolbox
is a class: there’s a Button class, a TextBox class, a Label

class, etc. When you drag a button out of the toolbox, the IDE
automatically creates an instance of the Button class and calls

it buttonl. When you drag another button out of the toolbox,

it creates another instance called button?2. Each instance of
Button has its own properties and methods. But every button acts
exactly the same way, because they’re all instances of the same class.

Before: Heve's a picture of Your
tomputer’s memory when your

program starts.

iy

House mapleDrivell5 =

%W Program
exetutes g new

statement.

new House() ;

Abter: Now it's

got an instance
o‘(: the Rouse

¢lass in memovy:

*
Check it out for yourself! * V\DQ t}ll'S.’

Open any project that uses a button called buttonl, *
and use the IDE to search the entire project for the

text “buttonl = new”. You'll find the code that

the IDE added to the form designer to create the

instance of the Button class.

In-stance, noun.

an example or one occurrence of
something. The IDE search-and-
replace feature finds every instance
of a word and changes it to another

94 Chapter 3

objects: get oriented!

A better solution..brought to you by objects! GUl stands for Graphica

User Intevface, which is

. . . . wha ' ildi
Mike came up with a new route comparison program that uses objects to find t Y: ure ‘Fb“"d"‘ﬂ when
. o ; ou i
the shortest of three different routes to the same destination. Here’s how he z ma e. a Yorm in the
- orm designer.
built his program.

o Mike set up a GUI with a text box—textBox1 contains the destination for the three
routes. Then he added textBox2, which has a street that one of the routes should avoid; and
textBox3, which contains a different street that the third route has to include.

The navigatorl
ob\.)CCJC is an
instante of the
Naviga{,ov elass.

e He created a Navigator object and set its destination. avigator

3.5 miles &

Navigator 8)5
SetCurrentLocation() !
SetDestination()
ModifyRoute ToAvoid() , ' , B .
ModifyRouteTolnclude() string destination = textBoxl.Text;
GEtROUte() Navigator navigatorl = new Navigator();
GetTimeToDestination()
TotalDistance() navigatorl.SetDestination (destination);

route = navigatorl.GetRoute();

e Then he added a second Navigator object called navigator2. He Mod\{lYRouthoAVo\d(), and
called its SetDestination () method to set the destination, and
then he called its Modi fyRouteToAvoid () method.

v aramc{iﬂ"

e The third Navigator object is called navigator3. Mike set its
destination, and then called its ModifyRouteToInclude () method.

Any time you
create a new
35miles 38 miles | 42 niles ohject from a

class, it's called

avigator avigator avigator3

, , , creating an
e Now Mike can call each object’s TotalDistance () method to figure
out which route is the shortest. And he only had to write the code once, instance 0'[

not three times!
that class.

you are here » 95

a little secret sauce

Wait a minute! You didn't give
me nearly enough information
to build the navigator program.

Theory and practice

Speaking of patterns, here’s a pattern that you’ll see over and over again
throughout the book. We’ll introduce a concept or idea (like objects) over the

course of a few pages, using pictures and small code excerpts to demonstrate the
idea. This 1s your opportunity to take a step back and try to understand what’s

going on without having to worry about getting a program to work.

House mapleDrivell5 = new House() ;

When we've introduting a new tontept
(like objects), keep your eyes open for
pictures and tode excerpts like this.

After we've introduced a concept, we’ll give you a chance to get it into your
brain. Sometimes we’ll follow up the theory with a writing exercise—like the
Sharpen your pencil exercise on the next page. Other times we’ll jump straight
into code. This combination of theory and practice is an effective way to get
these concepts off of the page and stuck in your brain.

A little advice for the code exercises

If you keep a few simple things in mind, it’ll make the code exercises go
smoothly:

* It’s easy to get caught up in syntax problems, like missing parentheses
or quotes. One missing bracket can cause many build errors.

* It’s much better to look at the solution than get frustrated with a
problem. When you’re frustrated, your brain doesn’t like to learn.

% All of the code in this book is tested and definitely works in Visual
Studio 2010! But it’s easy to accidentally type things wrong (like
typing a one instead of a lowercase L).

* If your solution just won’t build, try downloading it from the Head
First Labs website: http:/ / www.headfirstlabs.com/hfcsharp

96

That’s right, we didn’t. A geographic navigation program is
a really complicated thing to build. But complicated programs follow
the same patterns as simple ones. Mike’s navigation program is an
example of how someone would use objects in real life.

%USe oo \e

When you run into
a prol)lem with

a coJing exercise,
don’t be afraid

to pee]c at the
solution. You can
also download the
solution from the

Head First Labs

website.

objects: get oriented!

_ rpen your pencil
Follow the same steps that Mike followed on the facing page to write

the code to create Navigator objects and call their methods.

We 9ave you a head start. Heve's
the tode Mike wrote to get the
destination and street names from
the textboxes.

string destination = textBoxl.Text;
string route2StreetToAvoid = textBox2.Text;
string route3StreetToInclude = textBox3.Text;

Nav.lgator nav1gatolrl =. new Navllgat?r() ; And hcvc’s the tode {_p crca{:f Jc,:c
navigatorl.SetDestination (destination) ; naviga{-pr ob)cd:, set its destination,
int distancel = navigatorl.TotalDistance(); and 5c{: the distante.
1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and use its
| TotalDistance() method to set an integer variable called distance2. |
| Navigator navigator2 = |
| mavigator2. |
| navigator2. |
| int diStance2 = ... |
L - - - - - - - - - = = = 4
2. Create the navigator3 object, set its destination, call its ModifyRouteTolnclude() method, and use its
| TotalDistance() method to set an integer variable called distance3. |

ilt i mbevs and
h th.-Min() method built into the .NET Framework tompares two nu nd
Ic{cux]\j the |s::nallcsc’c o‘:c‘ Mike used it to find the shortest distance 1o the dcs{:majcnovfll

int shortestDistance = Math.Min(distancel, Math.Min (distance2, distance3));

you are here »

97

static cling

_ pen your pencil
sol tl Follow the same steps that Mike followed on the facing page to write
e u {li'l the code to create Navigator objects and call their methods.

string destination = textBoxl.Text; We gave You a head start. Here's
the tode Mike wrote 4o get the

string route2StreetToAvoid = textBox2.Text; destinat;
estination and street names from

string route3StreetTolInclude = textBox3.Text; the textboxes.
Navligator navigato‘rl =. new Nav‘igatﬁ)r () And heve's the tode ho chatf {::c
navigatorl.SetDestination(destination); y\aviga‘l:ov ob\')céjc; set its destination,
int distancel = navigatorl.TotalDistance(); and 5&, the distante.
]
1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and use its
| TotalDistance() method to set an integer varable called distance2. |
| Navigator navigator2 = vewNavigster) |
| navigator2. SetDestination(destination); |
| navigator2. ModifyRouteTofvoid(route2StreetToAvoid); |
| int distance2 = navigator 2. TotalDistance(); |
L - - - - - - - - - = = = 4
e T
2. Create the navigator3 object, set its destination, call its ModifyRouteTolnclude() method, and use its
| TotalDistance() method to set an integer varable called distance3. |
I Navisator naviastord = new NaviaaterQ |
. navigator3 SetDestination(destinationl; |
| navigaﬁo&.Modi«c\/Rou{:cTolm:ludc(rou£c38{:rcc£75lm:ludc); l

ilt i mbevs and
h £h.Min() method built into the NET Framework tompares two nu nd
Ic{;ﬁj the Is‘:mallcs{: one. Mike used it to find the shortest distante to the dcsjcma{:noyfl/

int shortestDistance = Math.Min(distancel, Math.Min (distance2, distance3));

98 Chapter 3

objects: get oriented!

o)

I've written a few classes now, but I haven't used “hew"
to create an instance yet! So does that mean I can call
methods without creating objects?

class Talker

{

{

string finalString =

pegy=

(]
v

-

} i
e 4

they live in classes.

public static int BlahBlahBlah(string thingToSay,

Yes! That’s why you used the static keyword in your methods.

Take another look at the declaration for the Talker class you built a few pages ago:

int numberOfTimes)

wrr,
’

When you called the method you didn’t create a new instance of Talker. You just did this:

Talker.BlahBlahBlah (“Hello hello hello”, 5);

That’s how you call static methods, and you've been doing that all along. If you take away
the static keyword from the BlahBlahBlah () method declaration, then you’ll have to
create an instance of Talker in order to call the method. Other than that distinction, static
methods are just like object methods. You can pass parameters, they can return values, and

There’s one more thing you can do with the static keyword. You can mark your whole
class as static, and then all of its methods must be static too. If you try to add a non-static
method to a static class, it won’t compile.

Dum

Q- When I think of something that’s “static,” I think of
something that doesn’t change. Does that mean non-static
methods can change, but static methods don’t? Do they
behave differently?

- No, both static and non-static methods act exactly the
same. The only difference is that static methods don't require
an instance, while non-static methods do. A lot of people have
trouble remembering that, because the word “static” isn’t really
all that intuitive.

Q- So | can’t use my class until | create an instance of
an object?

- You can use its static methods. But if you have methods
that aren’t static, then you need an instance before you can
use them.

therejare no .
b Questions

Q/: Then why would | want a method that needs an
instance? Why wouldn’t | make all my methods static?

A: Because if you have an object that's keeping track of
certain data—like Mike’s instances of his Navigator
class that each kept track of a different route—then you can
use each instance’s methods to work with that data. So when
Mike called his ModifyRouteToAvoid () method

in the navigator?2 instance, it only affected the route
that was stored in that particular instance. It didn't affect the
navigatorl ornavigator3 objects. That's how he
was able to work with three different routes at the same time—
and his program could keep track of all of it.

Q: So how does an instance keep track of data?
AI Turn the page and find out!

you are here » 99

an object’s state of affairs

An instance uses fields to keep track of things

You change the text on a button by setting its Text property in the chh"iﬂa”y, it's sc{:{ina a
IDE. When you do, the IDE adds code like this to the designer: / m‘/ A ropcv{:y is very

similar 4o 3 ield—but we'll
buttonl.Text = “Text for the button”; gc*l: into all that 3 liktle

Now you know that buttonl is an instance of the Button class. ater on.
What that code does is modify a field for the button1 instance.

You can add fields to a class diagram—just draw a horizontal line in

the middle of it. Fields go above the line, methods go underneath it.

Class
This is wheve a ¢lass Fiold]
diagram shows the Field2
«Ei(:clds. Evcv\/ instance Field3
the elass uses Add thi e i
J“E‘-’E"éﬁ“’ e Method 1) separate the Fields
oF 1ts state Method2() £rom the methods.
Method3()

Methods are what an object does. Fields are what the object knows.

When Mike created three instances of Navigator classes, his program created three objects.
Each of those objects was used to keep track of a different route. When the program created the
navigator?2 instance and called its SetDestination () method, it set the destination for that
one instance. But it didn’t affect the navigatorl instance or the navigator3 instance.

Navigator Evevy instante of Navigator knows
Destination its destination and its voute:
Route
SetCurrentLocation()

SetDestination() What a Navi . :

. . gator object does is
ModifyRoute ToAvoid() let you set a destinaki .

: , modif
ModifyRouteTolnclude() é\ its voute, and get imcot:azi‘:y: !
GetROUte() abou‘f: ‘{:ha‘f: route.
GetTimeToDestination()

TotalDistance()

An olnject’s hehavior is defined l)y its metllon,
and it uses fields to keep track of its state.

100 Chapter 3

Let’s ecreate some instances!

It’s easy to add fields to your class. Just declare
variables outside of any methods. Now every
instance gets its own copy of those variables.

TalkAboutYourself()

When you want to eveate instantes }
of Yyour class, don't use the static

keyword in either the elass detlavation

or the method declavation.

objects: get oriented!

“Rcmsmbcv, when you see
.void in front of 3 method,
it means that it doesn’t

V'C'l'.u\rn an\/ value.

class Clown {

public string Name;
public int Height;

public void TalkAboutYourself () {
MessageBox.Show (“My name is ”

+ Name + “ and I'm

+ Height + ™ inches tall.”);

r”

Remember, the *= operator tells C#
4o take whatever’s on the left of Jc):c
opevator and multiply it by whatever's

_ q@_\r&pm your pencil

Clown oneClown

new Clown () ;
oneClown.Name = “Boffo”;
14;

oneClown.Height

oneClown.TalkAboutYourself () ;

Clown anotherClown

new Clown () ;
anotherClown.Name = “Biff”;
16;

anotherClown.Height

anotherClown.TalkAboutYourself () ;

Clown clown3 new Clown () ;

clown3.Name

anotherClown.Name;

clown3.Height oneClown.Height - 3;

clown3.TalkAboutYourself () ;

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself () ;

on the vigh{:‘
Write down the contents of each message box that will be displayed
after the statement next to it is executed.
“My nameis_______andI'm______inchestall”
"My nameis_______andI'm______inchestall”
“Mynameis_______andI'm______inchestall”
"My nameis_______andI'm______inchestall”

you are here » 101

a heaping helping of objects

Thanks for the memory

When your program creates an object, it lives in a part of the
computer’s memory called the heap. When your code creates an
object with a new statement, C# immediately reserves space in the

heap so it can store the data for that object. ‘ﬁ
Heve's a picture of the heap betore the

?ro\')ccjc starts. Notice that it's empty.

Let’s take a closer look at what happened here \

— qgharpen your penci
R solutwn Write down the contents of each message box that will be displayed
after the statement next to it is executed.

oneClown.Name

Ob‘)Cd: and ‘:i”i"a it up with the objca'[:'s data.
oneClown.Height = 14;

oneClown.TalkAboutYourself () ;

Clown anotherClown new Clown () ;
anotherClown.Name = “Bi

anotherClown.Height = 16;

anotherClown.TalkAboutYourself () ;
Clown clown3 =

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

anotherClown.Height *= 2;

Each of these new stat
hew ements eveat, i
Clown oneClown tlass by veserving a thunk of mcmir\/c:na"(\:}:nstahacﬁop e Lo
= “Boffo“; ¢ heap ror that

“My name is _Bﬂ:&_ and I'm __’i_ inches tall” /
“My name is _Bi"__ and I'm __“’__ inches tall” e

clown3.TalkAboutYourself () ; “My name is Bt andrm Il inchestallr ===

O\

|\

anotherClown.TalkAboutYourself () ; “My name is ﬁ'ﬂ’__ and I'm _il__ inches tall!

When your program creates a new ol)ject, it gets added to the heap.

102 Chapter 3

objects: get oriented!

This ob\')cc{: is an instance of the
What’s on your program’s mind = Q/

Here’s how your program creates a new instance of the “Boffo"
Clown class: 14 —
Clown myInstance = new Clown () ; i\u
. “Town 5o\’
That’s actually two statements combined into one. The nho

first statement declares a variable of type Clown (Clown
myInstance;). The second statement creates a new

object and assigns it to the variable that was just created
(myInstance = new Clown () ;). Here’s whatt
looks like after each of these statements:

eap

“Boffo”

Clown oneClown = new Clownf();
oneClown.Name = “Boffo”; The Steds and i
. 1S LVC
oneClown.Height = 14; \Q‘\c\ds are sev

oneClown.TalkAboutYourself () ;

Q'\Ys*a ob;)cc\:.

C7°Wn o‘O\e’b

Clown anotherClown = new Clown () ;

These statements treate

anotherClown.Name = “Biff”;
. the second object and fill it
anotherClown.Height = 16; with data.

anotherClown.TalkAboutYourself () ;

()
b
Clown clown3 = new Clown(); (@)

“Boffo”

o’
own oo¥? ~
clown3.Name = anotherClown.Name; #
clown3.Height = oneClown.Height - 3; o) o
own go¥’

clown3.TalkAboutYourself () ; e
/ Then the thivd C\o:ndobJeL

cveated and populated-

Theve's no new tommand, whith means

these statements don't ereate a new oo
object. They've just modifying OM‘//J

that's already in memory.

“Boffo”
e anotherClown.Height *= 2; 14 E
‘yanotherClown.TalkAboutYourself () ™ C7 : @b
* Own 00\

you are here » 103

making methods make sense

You can use class and method
names to make your code intuitive

When you put code in a method, you’re making a choice about how to structure
your program. Do you use one method? Do you split it into more than one? Or do
you even need a method at all? The choices you make about methods can make your
code much more intuitive—or, if you’re not careful, much more convoluted.

o Here’s a nice, compact chunk of code. It’s from a control program that

runs a machine that makes candy bars. The ehkTe 0
— empO) method vel,
int €Turns g
int t = m.chkTemp () ; eer... b"{l what does it do? "

“‘{Zb", “'ICS", and umu SE (£ > 160) {

are terrible namcsi T tb = new T(); The clsT\r?V()

We have no idea tb.clsTrp @ method has one
what they do. And ics.Fill(); pavameter, but we
what's that T elass ics.vVent () ; don't know what
For.? m.airsyschk () ;

it's supposed to be.
}

Take a second and look at that code. Can you figure out what it does?

Those statements don’t give you any hints about why the code’s doing what it’s doing. In this case, the
gwey y y g g)
programmer was happy with the results because she was able to get it all into one method. But making
your code as compact as possible isn’t really useful! Let’s break it up into methods to make it easier to

read, and make sure the classes are given names that make sense. But we’ll start by figuring out what the
code is supposed to do.

How do Yyou fioure ovjc%:\:;g
. o?
our ode & S\f\?YOS_Cg{cn for General Electronics Type 5 Candy Bar Maker
Well, all code E’ " 4o You to Specification Manual
.Soits v) .
2:\6;3:0:\»{: that rcason\!l In this The nougat temperature must be checked every 3 mlonutes by an
Lassc we tan look up the page automated system. If the temperature exceeds 160 (:‘., the (iandy
i {:;\c 5\’“'.‘{:-‘(’3{"“0“ mam\a‘ d is too hot, and the system must perform the candy isolation
n
evr Xo owea.

fhat the \7“°5"a""(‘ cooling system (CICS) vent procedure.
\—/§ « Close the trip throttle valve on turbine #2

« TFill the isolation cooling system with a solid stream of water

o Vent the water

« Verify that there is no evidence of air in the system

104 Chapter 3

objects: get oriented!

9 That page from the manual made it a lot easier to understand the code. It also gave us some great
hints about how to make our code easier to understand. Now we know why the conditional test checks
the variable t against 160—the manual says that any temperature above 160°C means the nougat
is too hot. And it turns out that m was a class that controlled the candy maker, with static methods
to check the nougat temperature and check the air system. So let’s put the temperature check into a
method, and choose names for the class and the methods that make the purpose obvious.

public IsNougatTooHot () {

The IsN Sa{:TooHo{:O int temp = Maker.CheckNougatTemperature () ;
e [sNowu) i
method's veturn {:\/Fc if (temp > 160) { B‘/ naming Lhe elass “Maker and {,-:hc
return true; method “ChcckNouga‘cTCmycra{wc)
} else { khe tode is a lot easier +o undevstand.
return false; é—\
} .
} This method’s veturn type is

Boolean, which means it veturns a
Hrue ov false value.

e What does the specification say to do if the nougat is too hot? It tells us to perform the candy isolation
cooling system (or CICS) vent procedure. So let’s make another method, and choose an obvious name
for the T class (which turns out to control the turbine) and the ics class (which controls the isolation
cooling system, and has two static methods to fill and vent the system):

public \woid)DoCICSVentProcedure () {
A void veturn

{\/PC 5 Turbine turbineController = new Turbine();
means
the method doesn’t turbineController.CloseTripvalve (2) ;
vreturn any value at all. IsolationCoolingSystem.Fill ()
IsolationCoolingSystem.Vent () ;
Maker.CheckAirSystem() ;
}

e Now the code’s a lot more intuitive! Even if you don’t know that the CICS vent procedure needs to
be run if the nougat is too hot, it’s a lot more obvious what this code is doing:

if (IsNougatTooHot () == true) {
DoCICSVentProcedure () ;
}
You can make your code easier to read and write l;y tllinl(ing about
the Pro]olem your coJe was built to solve. If you clloose names for your
methods that make sense to someone who understands that Problem,

then your code will be a lot easier to Jeciplner...aml Jevelo]o!

you are here » 105

classes

Give your classes a natural structure

Take a second and remind yourself why you want to make your methods intuitive:
because every program solves a problem or has a purpose. It might not
be a business problem—sometimes a program’s purpose (like FlashyThing) is just to
be cool or fun! But no matter what your program does, the more you can make your

code resemble the problem you’re trying to solve, the easier your program will be to
write (and read, and repair, and maintain...).

106

Use ¢lass diag\rams {:o ?lan ou'l: \/ow ¢lasses

A class diageam is a simple way o draw your ClassName

sses out on paper. [t's 3 veally valuable tool
Eljv ;csign'mg \/‘:u‘:'ct.odc BEFORE You start
writing it
Write the name of the class at the top of
the diagram. Then write eath method in the
box at the bottom. Now you ean see all of the
parts of the tlass at a glancc!

Method()
Method()
Method()

-

Let’s build a class diagram

Take another look at the if statement in #5 on the previous page. You already know that statements
always live inside methods, which always live inside classes, right? In this case, that 1 f statement was
in a method called DoMaintenanceTests (), which is part of the CandyController class.

Now take a look at the code and the class diagram. See how they relate to each other?

class CandyController ({

public void DoMaintenanceTests () {

if (IsNougatTooHot () == true) {
DoCICSVentProcedure () ;

CandyController

DoMaintenanceTests()

DoCICSVentProcedure()
IsNougatTooHot()

public void DoCICSVentProcedure ()

public boolean IsNougatTooHot ()

objects: get oriented!

rpeu your PBI[GI!
= The code for the candy control system we built on the previous

page called three other classes. Flip back and look through the
code, and fill in their class diagrams.

We filled i the ¢lass name

or {:}HS one. Wh
does heve? at method

Turbine

of Lhe tlasses had
Oah:\c’d\od called FiNO-
Filli its tlass name
a:\d n',s other method-

There was one other
tlass in the tode on the
Previous page. Fill in its
name and mc{:hod-

you are here » 107

a few helpful tips

Class diagrams help you organize your
classes so they make sense

Writing out class diagrams makes it a lot easier to spot potential problems in your
classes before you write code. Thinking about your classes from a high level before
you get into the details can help you come up with a class structure that will make
sure your code addresses the problems it solves. It lets you step back and make sure
that you’re not planning on writing unnecessary or poorly structured classes or
methods, and that the ones you do write will be intuitive and easy to use.

Dishwasher Dishwasher
CleanDishes() The class is called CleanDishes()
AddDetergent() “Dishhwéashher”i:g all I’;he AddDetergent()
SetWaterTemperature methods should be about SetWaterT t
ParkTheCar()p 0 — washing dishes. Butone = etWaterTemperature()

method—ParkTheCar()—has

nothing to do with dishes, so it

should be taken out and put in
another class.

- r r pencil
Fm you W ; \/ou eould £i t that
N b sﬂlutwn The code for the candy control system we built on the igure out tha

previous page called three other classes. Flip back and Maker if a tlass beeause it
look through the code, and fill in their class diagrams. ~dPpears in front of a dot in

Makcr.ChcckAirS\/s{;em().
Turbine ,sola‘{:ionCoolinss\/S{:Cm Maker (J
Fill()
CloseTripValve() CheckNougat Temperature()

Vent()

108 Chapter 3

_ q@fﬂ your pencil

Class23

objects: get oriented!

CandyBarWeight()
PrintWrapper()
GenerateReport()
Go()

DeliveryGuy

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

DeliveryGirl

AddAPizza()
PizzaDelivered()
T TotalCash()
ReturnTime()

CashRegister

MakeSale()

NoSale()

PumpGas()

Refund()
TotalCashInRegister()
GetTransactionList()
AddCash()

RemoveCash()

Each of these classes has a serious design flaw. Write down what
you think is wrong with each class, and how you'd fix it.

This class is part of the candy manufacturing system from earlier.

These two classes are part of a system that a pizza parlor uses to
track the pizzas that are out for delivery.

The CashRegister classis part of a program that’s used by an
automated convenience store checkout system.

you are here »

109

create a class

_ ncil
@;Fm yw&rlllf’c&.inn

Here’s how we corrected the classes. We show just one
possible way to fix the problems—but there are plenty of other ways

you could design these classes depending on how they’ll be used.¥

This class is part of the candy manufacturing system from earlier.

These two classes are part of a system that a pizza parlor uses to
track the pizzas that are out for delivery.

We added the Gender field betause we

CandyMaker

CandyBarWeight()
PrintWrapper()
GenerateReport()
MakeTheCandy()

DeliveryPerson

Gender

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

assumed there was a reason +o tratk delivery

quys and girls sc?ara{:clz, and that's why

Iheve were two tlasses tor them.

The CashRegister class is part of a program that’s used by an
automated convenience store checkout system.

All of the methods in the elass do stuff that has to do with

CashRegister

MakeSale()

NoSale()

Refund()
TotalCashInRegister()
GetTransactionList()
AddCash()
RemoveCash()

110

Chapter 3

objects: get oriented!

public partial class Forml : Form
{

private void buttonl Click(object sender, EventArgs e)

et e Poo] Puzzle

Echo el = new Echo();

Your job is to take code snippets from the
pool and place them into the blank
lines in the code. You may use
the same snippet more than once,
and you won't need to use all the
snippets. Your goal is to make
classes that will compile and run
and produce the output listed.

int x = 0;
while () |

result = result + el.Hello() + “\n”;

if |) A

e2.count = e2.count + 1;
) Output

if |) | T

e2.count = e2.count + el.count;

hellegoa..
hellann...
hellocos...
hellnonn...

} Count: 10

MessageBox.Show (result + “Count: ” + e2.count);

}

class {
public int = 0; Bonus Question!
public string { If the last line of output was
return “helloooo...”: 24instead 0f1°, hOW W0u|d
} you complete the puzzle?
} You can do it by changing
) just one statement.
Note: Each

snippet from the
pool can be used

more than once! x<5 Echo

x>0 Tester
e2 x> 1 Echo() e2=el;
Count .
SR count () Echo e2;
Hello() Echoe2=el;

el =count+ 1;
el.count =count+1;
el.count=el.count +1;

Echo e2 = new Echo();

— Answers on page 122.

you are here » 111

working class guys

Build a class to work with some quys

Joe and Bob lend each other money all the time. Let’s create a class to Guy
keep track of them. We’ll start with an overview of what we’ll build. Name
Cash
o We'll create a Guy class and add two instances of it to a form
The form will have two fields, one called joe (to keep track of the first object),
and the other called bob (to keep track of the second object). GiveCash()
The new statements ReceiveCash()
fhat eveate the two
instantes live in the !
tode that gets vun as
soon as the form is We chose names for the
eveated. Heve's what . ’é\/ ;c{hods ‘E;a{: make sense.
he heap looks like ~ X ou tall a Quy objeet’s
JZ(:{:cr £"hc form is : -\% Q/y Ob\\zc GiveCash() MZ‘Eho‘zi to tell
loaded. %ob}@c him to give up some of his

¢ash, and his ReteiveCash()
method when You want him
to take some tash back.
We eould have called them
GiveCashToSomeone() and
ReteiveCashFromSomeone(),
but that would have been
very long!

e We'll set each Guy object’s cash and name fields
The two objects represent different guys, each with his own name and a
different amount of cash in his pocket.

Each auy has a Name \
field that keeps track of

his name, and a Cash field

that has the number of

When Yyou take an instante
of éu\/ and eall its

bueks in his pocket. y ~ . R :
: . X ReceiveCash() method, you
% : @Cx% Q/y ob‘\zc' pass the amount of cash
oby the quy will take as a

pavameter. So calling joe.
ReceiveCash(25) tells Joe
4o veceive 25 bucks and
add them to his wallet.

e We'll give cash to the guys and take cash from them
We’ll use each guy’s ReceiveCash () method to increase a guy’s cash,
and we’ll use his GiveCash () method to reduce it.

The form calls the o jcct’s ReteiveCash()

method. [£s called ReteiveCash() because
he's veteiving the cash.

ﬁ joe.ReceiveCash(ZS) ; ﬁ

. £y ' 3
> G . X
eC The method veturns the eC
Q/y ob number of butks that the guy K oby
added to his Cash field.

112 Chapter 3

objects: get oriented!

Create a project for your guys

Create a new Windows Forms Application project (because we’ll]
be using a form). Then use the Solution Explorer to add a new DQ J[lﬂs-
class to it called Guy. Make sure to add “using System. >* ‘*

Windows.Forms;” to the top of the Guy class file. Then fill
in the Guy class. Here’s the code for it:

The éu\/ ¢lass has two fields. The Name field is
a string, and it'll contain the 9uy’s name (“Joe”).
And the Cash field is an int, which will kcc?
class Guy { I/ track of how many bucks are in his pocket.
public string Name;

The GiveCash() method has one ya\ramc{:cr
public int Cash;

called amount that \/ou’\l use 1o tell the
/ guy how muth tash to give Yyou.
public int GiveCash(int amount) ({

The Quy makes ﬂ e (2:;nf=<zm§:zl: . && amount > 0) { He uses an if statement to t‘).\CCt

sure Jchzlc ou've . whether he has enough ¢ash—i ek and

a:king him onr a3y lretlilrn amount; does, he takes it out of his potket an
else

?osi{‘,ivc amount

veturns it as the vetuen value.
of tash, otherwise

MessageBox. Show (

he'd add o his “I don’t have enough cash to give you ” + amount,
¢ A "y .
tash instead of Name + ' says... 1C) ;)
{:akmg awa\/ ‘CY‘OW\ return 0 ’ $ ’ 'U‘\C gu\/ dOCSh‘l‘, havc CV\OUS"\ cash, ht'”
it } tell you so with message box, and then
}

he'll make GiveCash() vetuwrn O.

The ReceiveCash() method works \)uﬂ: like
public int ReceiveCash(int amount) { ,, GiveCash() method. [£'s passed an
if (amount > 0) { amount as a pavameter, cheeks to make
Cash += amount; <~ sure that amount is greater than zero,
return amount; and then adds it to his cash.
} else {

MessageBox.Show (amount + “ isn’t an amount I’1l1l take”,
Name + “ says...”);

return O; R I£ the amount was positive, then the
} ReceiveCash() method veturns the amount
} added. | it was zevo or negative, the 9uy

shows a message box and then veturns O.
@\/ Be caveful with your eurly brackets. [+'s easy to

have the wrong number—make sure that every openi

bracket has a matehing tlosing bracket. thr:/ ’c:cy':c

all balanted, the |DE will aubomajcically indent them

for YYou when You ‘E)'Pc the last Llosing bracket. you are here » 113

joe says, “where’s my money?”

Build a form to interact with the quys

The Guy class is great, but it’s just a start. Now put together a*e *
a form that uses two instances of the Guy class. It’s got labels

that show you their names and how much cash they have, and [-. Budd -d»l lsy
*

buttons to give and take cash from them.

e Add two buttons and three labels to your form
The top two labels show how much cash each guy has. We’ll also add a field called bank to the
form—the third label shows how much cash is in it. We’re going to have you name some of the
labels that you drag onto the forms. You can do that by clicking on each label that you want
to name and changing its *(Name)” row in the Properties window. That’ll make your code a
lot easier to read, because you’ll be able to use “joesCashLabel” and “bobsCashLabel” instead of

“labell” and “label2”.

g} Fun with Joe and Bob lﬂ Name the top label
JjoesCashL abel, the label
Joe has $50 underneath it bobsCashlabel,
and the bottom label
This button vill call P bankCashLabel. You ean
the Joe objeet’s The bank has $100 leave their Text properties
ReteiveCash() method, alone; we'll add a method to
passing it 10 as the form to set them.
the amount, and N Give $10to Receive 35
Eub{:\raifing f\rom the — [1 Joe e A This button will eall the Bob
orm’s bank field the bject’s Gi h(O) m
eash that Joe receives. object’s GiveCash() method,

passing it 5 as the amount, and
adding the cash that Bob gives
4o the form’s bank field.

e Add fields to your form
Your form will need to keep track of the two guys, so you’ll need a field for each of them. Call
them joe and bob. Then add a field to the form called bank to keep track of how much money
the form has to give to and receive from the guys.

namespace Your Project Name {

:) .
Sinte weve using 1 p1ic partial class Forml : Form {

éu\/ objc()cs to

keep track of Guy joe; The amount. of

Joe and Bob, Guy bob; in +he Euh) cash
detlare] _ . K\ ' orm's bank

\{/;\ucir Lields in int bank = 1007 field 90¢s up and down

the form using public Forml () { dc?"‘d"‘s on how muth

the 6“‘/ tlass. InitializeComponent () ; money the form 9ave to

and veteived from the

} 5uy ochC‘Es.

114 Chapter 3

objects: get oriented!

e Add a method to the form to update the labels
The labels on the right-hand side of the form show how much cash each guy has and how much
1s in the bank field. So add the UpdateForm () method to keep them up to date—make sure
the return type is void to tell C# that the method doesn’t return a value. Type this method
into the form right underneath where you added the bank field: This new method
is sim‘?lc. It J“S'{:

bli id UpdateF
public voi pdateForm () { uPda{:cs Lhe three

Notice how the labels joesCashLabel.Text = joe.Name + “ has $” + joe.Cash; labels b‘/ SC{:’{:MS
are uFda-[;cd “Si"ﬁ the bobsCashLabel.Text = bob.Name + “ has $” + bob.Cash; their Text onPcr'{:ics.
6"‘/ OPCC{:S) Name and bankCashLabel.Text = “The bank has $” + bank; You'” have eath
Cash fields. } button call it 4o keep

the labels up to date.

e Double-click on each button and add the code to interact with the objects
Make sure the left-hand button is called buttonl, and the right-hand button is called button?2.
Then double-click each of the buttons—when you do, the IDE will add two methods called
buttonl Click() andbutton2 Click() to the form. Add this code to each of them:

private void buttonl Click(object sender, EventArgs e) {

if (bank >= 10) { th," the user elicks the “Give 10 4o
bank -= joe.ReceiveCash (10); Joe button, the form calls the Joe
UpdateForm() ; Ob\)c&‘s ReteiveCash() method—but °"l)'

if the bank has enough money.

} else {

MessageBox.Show (“"The bank is out of money.”);

} The bank needs at least {10 to give to

} Joe. I«C theve's not cnough, itll pop up
this message box.

private void button2 Click(object sender, EventArgs e) {

bank += bob.GiveCash(5); ,)
The “Reteive §5 from Bob” button
doesn't need to theek how muth is
in the bank, because itll \')us{: add ,
whatever Bob gives back. N__ |f Bob's out of money,

GiveCash() will veturn zevo.

UpdateForm() ;

e Start Joe out with $50 and start Bob out with $100
It’s up to you to figure out how to get Joe and Bob to start out with their Cash and
Name fields set properly. Put it right underneath InitializeComponent () in the form.
That’s part of that designer-generated method that gets run once, when the form is first initialized.

Once you've done that, click both buttons a number of times—make sure that one button takes
$10 from the bank and adds it to Joe, and the other takes $5 from Bob and adds it to the bank.

public Forml () {
ToitinizeComponent () L Add the lines of tode heve 4o
ereate the two objeets and set
their Name and Cash fields.

// Initialize joe and bob here!

ExerciSe '’

you are here » 115

exercise solution

fwo set its fields.

joe =
joe.Name

Make sure you call UpdateForm() so
the labels look vight when the form
fivst Pops up-

new Guy () ;

joe.Cash = 50;

It’s up to you to figure out how to get Joe and Bob to start out with their Cash
and Name fields set properly. Put it right underneath InitializeComponent () in

InitializeComponent () ;

new Guy () ;

the form.
public Forml () {
Heve's wheve we set up the ?ivs{:
inskance of Quy. The Liest line bob =
cveates the ob\')cd:, and the next bob . Name

- \\Bobll ;

bob.Cash = 100;

Then we do the same for the

= \\Joe,, . .
¢ setond instante of the Quy elass.

w UpdateForm() ;
}

therejare no
b Questions

Dum

Q,: Why doesn’t the solution start with “Guy bob = new
Guy () ”? Why did you leave off the first “Guy”?

A: Because you already declared the bob field at the top of the
form. Remember how the statement“int i = 5;”is the same
as the two statements “int i”and“i = 5;"? Thisis the same
thing. You could try to declare the bob field in one line like this:
‘Guy bob = new Guy () ;" Butyou already have the first
part of that statement (‘Guy bob ;") at the top of your form. So
you only need the second half of the line, the part that sets the bob
field to create a new instance of Guy ().

Q: OK, so then why not get rid of the “Guy bob;” line at
the top of the form?

A- Then a variable called bob will only exist inside that special
‘public Forml ()” method. When you declare a variable
inside a method, it's only valid inside the method—you can't access
it from any other method. But when you declare it outside of your
method but inside the form or a class that you added, then you've
added a field accessible from any other method inside the form.

116 Chapter 3

Make sure You save the
Pro\')cc{: now——wcln tome

batk to it in a few pages-

N

Q,: What happens if | don’t leave off that first “Guy”?

A: You'll run into problems—your form won’t work, because it
won't ever set the form’s bob variable. Think about it for a minute,
and you'll see why it works that way. If you have this code at the top
of your form:

public partial class Forml
Guy bob;

Form {

and then you have this code later on, inside a method:

Guy bob = new Guy();

then you've declared two variables. It's a little confusing, because
they both have the same name. But one of them is valid throughout
the entire form, and the other one—the new one you added—is only
valid inside the method. The next line (bob .Name = “Bob”;)
only updates that local variable, and doesn’t touch the one in the
form. So when you try to run your code, it'll give you a nasty error
message (‘NullReferenceException not handled”), which just means
you tried to use an object before you created it with new.

objects: get oriented!

Theres an easier way to initialize objects Object intializers

Almost every object that you create needs to be initialized in some way. save you time anc[
And the Guy object is no exception—it’s useless until you set its Name

and Cash fields. It’s so common to have to initialize fields that C# gives malge your COC[e
you a shortcut for doing it called an object initializer. And the IDE’s

IntelliSense will help you do it. more COmPact

and easier to
Here’s the original code that you wrote to I'ea(l[...anC[tlle

initialize Joe’s Guy object.
foe = rew G0 IDE helps you
joe.Name = “Joe”;

joe.Cash = 50; write tllem.

Delete the second two lines and the semicolon after “Guy () ,” and add a right curly bracket.
joe = new Guy () {

Press space. As soon as you do, the IDE pops up an IntelliSense window that shows you all of
the fields that you’re able to initialize.

joe = new Guy() {
¢ [SEINN | int Guy.Cash |

¥ Mame

Press tab to tell it to add the Cash field. Then set it equal to 50.
joe = new Guy() { Cash = 50

Type in a comma. As soon as you do, the other field shows up.

¢ (LN | string Guy.Name

joe = new Guy() { Cash = 50,

Finish the object initializer. Now you’ve saved yourself two lines of code!
joe = new Guy() { Cash = 50, Name = “Joe” };
This new detlavation does exattly the same /\

thing as the three lines of tode you wrote
originally. [+'s Jusk shorter and easier to vead.

you are here » 117

a few helpful tips

A few ideas for designing intuitive classes

» You're building your program to solve a problem.

Spend some time thinking about that problem. Does it break down into pieces
easily? How would you explain that problem to someone else? These are good
things to think about when designing your classes.

It'd be great if T
could compare a few
routes and figure out
which is fastest....

» What real-world things will your program use?

A program to help a zoo keeper track her animals’ feeding schedules might have
classes for different kinds of food and types of animals.

Use descriptive names for classes and methods.
Someone should be able to figure out what your classes and methods do just by
looking at their names.

@ bestRoute 45)
6)\
%5 ObieS /VavigmoV

Look for similarities between classes.

X

Sometimes two classes can be combined into one if they're really similar. The candy

manufacturing system might have three or four turbines, but there’s only one
method for closing the trip valve that takes the turbine number as a parameter.

BlockedRoad i Detour
Name ClosedRoad Name
Duration StreetName Duration
ReasonltsClosed ReasonltsClosed
FindDetour() - :
CalculateDelay() FindDetour()
CalculateDelay()
T—
118 Ch;pteT_

objects: get oriented!

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.

e Use an object initializer to initialize Bob's instance of Guy
You've already done it with Joe. Now make Bob’s instance work with an object

idatzer too £ you alveady tlicked the button, \')us{: delete
it, add it back to Your Lorm, and vename it.
Then delete the old button3_Clitk() method
that the [DE added before, and use the new

e Add two more buttons to your form method it adds now.
The first button tells Joe to give 10 bucks to Bob, and the second tells Bob to give 5
bucks back to Joe. Before you double-click on the button, go to the Properties
window and change each button’s name using the “(Name)” row—it’s at the top of
the list of properties. Name the first button joeGivesToBob, and the second one

bobGivesToJoe.
o5l Fun with Joe and Bob I&
Joe has 50
Bob has 3100
This button tells Joe to The bank has $100
give |0 bueks to BOEZ,N so p
should use the “(Name . _
\\/r:; in the Properties Give $101o ‘ Receive 35 ‘
window to name it Joe - This button Lells Bob 4o
")océ'wcsToBob. Joe gives $10 | [Bob gives §5 {?&WE i b.ucks to Joe. Name
—> toBob to Joe , it bobGivesToJoe.

9 Make the buttons work
Double-click on the joeGivesToBob button in the designer. The IDE will add a
method to the form called joeGivesToBob Click () that gets run any time the
button’s clicked. Fill in that method to make Joe give 10 bucks to Bob. Then double-
click on the other button and fill in the new bobGivesToJoe Click () method
that the IDE creates so that Bob gives 5 bucks to Joe. Make sure the form updates itself
after the cash changes hands.

you are here » 119

exercise solution

The £rick heve is
‘Ehinking {:\wough
who's giving the
¢ash and who's
veteiving it.

AN
Exercise
SoLution
public partial class Forml : Form {
Guy jo0s Here are the object initializers for
Guy bob; the two instances of the 60\\/ ¢lass.
int bank = 100; Bob gets initialized with 100 bueks
and his name.

public Forml () {

public void UpdateForm() {

private void buttonl Click(object sender, EventArgs e) { Bob’s RCCcchCashO

private void button2 Click(object sender, EventArgs e) { bY éiVCCGShO are

private void joeGivesToBob Click (object sender, EventArgs e) {

}

private void bobGivesToJoe Click (object sender, EventArgs e) {

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.

InitializeComponent () ;

bob = new Guy() { Cash = 100, Name = “Bob” };
joe = new Guy() { Cash 50, Name = “Joe” };

UpdateForm() ;

joesCashLabel.Text = joe.Name + “ has $” + joe.Cash;

bobsCashLabel.Text = bob.Name + “ has $” + bob.Cash; To make Joe 3iVC tash

bankCashLabel.Text = “The bank has $” + bank; 't° BOb, we ¢éall \)oe)s
GiveCash() method and
send its vesults into

if (bank >= 10) ({ method.
bank -= joe.ReceiveCash(10);
UpdateForm() ;

} else {

Take a ¢lose look at
how the 6“‘/ methods
are bcing ealled. The
vesults veturned

MessageBox.Show (“"The bank is out of money.”);

bank += bob.GiveCash (5) ; pumped right into
UpdateForm () ; ReeeiveCash() as its
Paramc{;cr.

bob.ReceiveCash (joe.GiveCash (10)) ;
UpdateForm() ;

joe.ReceiveCash (bob.GiveCash (5)) ;
UpdateForm() ;

Before you go on, take a minute and flip to #1 in the “Leftovers” appendix,

120 Chapter 3 pecause there’s some basic syntax that we haven’t covered yet. You won’t

need it to move forward, but it’s a good idea to see what’s there.

Objectcross

objects: get oriented!

It’s time to give your left brain a break, and put that

right brain to work: all the words are object-related

and from this chapter.

Sl
il
al
Across
2. If a method’s return type is , it doesn’t return anything

7. An object’s fields define its

9. Agood method
does

makes it clear what the method

10. Where objects live

11. What you use to build an object

13. What you use to pass information into a method
14. The statement you use to create an object

15. Used to set an attribute on controls and other classes

co

Down

1. This form control lets the user choose a number from a range
you set

3. It's a great idea to create a class
you start writing code

on paper before

4. An object uses this to keep track of what it knows
5. These define what an object does
6. An object’s methods define its

7. Don't use this keyword in your class declaration if you want to
be able to create instances of it

8. An object is an of a class

12. This statement tells a method to immediately exit, and can
specify the value that should be passed back to the statement
that called the method

you are here » 121

puzzle solutions

Poo] Puzzle Jolution

Your job was to take code snippets from

the pool and place them into the
blank lines in the code. Your goal
was to make classes that will
compile and run and produce the
output listed.

public partial class Forml : Form
{
private void buttonl Click(object sender, EventArgs e)

{

String result = “; That's the correct answer.
Echo el = new Echo(); And here’s the bonus answer!
Etho e2 = new Ethol); € Etho e = el;

int x = 0;

while (x<&)
result = result + el.Hello() + “\n”;
el.tount = el.tount + |;
if | * ==) |

e2.count = e2.count + 1;

}
if x>0) |

e2.count = e2.count + el.count;

MessageBox.Show (result + “Count: ” + e2.count);

class _ Etho |
public int & = 0;
public string fello)

return “helloooo...”;

122 Chapter 3

objects: get oriented!

>
|
|
]
=

173

== o\ = e
= 2
i i

123

you are here »

4 types and references

It's 10:00.
< Do you know where your data is? *

This data just got garbage collected.

Data type, database, Lieutenant Commander Data...

it’s all important stuff. without data, your programs are useless. You
need information from your users, and you use that to look up or produce new
information to give back to them. In fact, almost everything you do in programming
involves working with data in one way or another. In this chapter, you'll learn the
ins and outs of C#'s data types, see how to work with data in your program, and

even figure out a few dirty secrets about objects (pssst...objects are data, too).

this is a new chapter 125

not my type

The variables type determines what

kind

of data it can store

There are a bunch of types built into C#, and each one stores a
different kind of data. You've already seen some of the most common
ones, and you know how to use them. But there are a few that you

haven’t seen, and they can really come in handy, too.

Types you’ll use all the time

)
It shouldn’t come as a surprise that int, string, bool, and double are the most A whole number doesnt

common types. / have a decimal Yoin{:-

* int can store any whole number from —2,147,483,648 to 2,147,483,647.

AN N)

string can hold text of any length (including the empty string

*
* Dbool is a Boolean value—it’s either true or false. m
« oat” is short for

double can store real numbers from £5.0 X 107?* to £1.7 X 10°*® with up to

16 significant figures. That range looks weird and complicated, but it’s actually
pretty simple. The “significant figures” part means the precision of the number:
35,048,410,000,000, 1,743,059, 14.43857, and 0.00004374155 all have seven
significant figures. The 10°® thing means that you can store any number as large
as 10% (or 1 followed by 308 zeroes)—as long as it only has 16 or fewer significant
figures. On the other end of the range, 10*** means that you can store any number
as small as 107* (or a decimal point followed by 324 zeroes followed by 1)... but,
you guessed it, as long as it only has 16 or fewer significant figures.

More types for whole numbers [
Once upon a time, computer memory was really expensive, and processors were really

slow. And, believe it or not, if you used the wrong type, it could seriously slow down your
program. Luckily, times have changed, and most of the time if you need to store a whole
number you can just use an int. But sometimes you really need something bigger... and
once in a while, you need something smaller, too. That’s why C# gives you more options:

* Dbyte can store any whole number between 0 and 255.

* sbyte can store any whole number from —128 to 127 h
* short can store any whole number from —32,768 to 32,767.

“\c,oafihg point”—3as
oPPosed o 3 “fixed
Point” number, which
a"”a)’s has the same
number of detimal
places.

A lot of times, if
\/ou'!rc using these
types it's because
\/ou‘\rc solving a
problem wheve

it vcall\/ helps to
have the “wrapping
avound” C‘F‘('ICC'E that
you'll vead about in

a few minutes.

«» The “s” in sbyte stands for “signed,”
The “u * ushort can store any whole number from 0 to 65,535. which means it tan be y\ega{;ivc (the
stands for ' “sign” is 3 minus sign).
« o » uint can store any whole number from 0 to 4,294,967,295.
unsigned

[* long can store any whole number between minus and plus 9 billion billion.

126

* ulong can store any whole number between 0 and about 18 billion billion.

Chapter 4

types and references

Types for storing really H UG E and really tiny numbers

Sometimes 7 significant figures just isn’t precise enough. And, believe it or not, sometimes 10*
isn’t big enough and 10 isn’t small enough. A lot of programs written for finance or scientific
research run into these problems all the time, so C# gives us two more types:

When your
‘7Y‘05V‘a"‘ needs
to deal with & gecimal can store any number from +1.0 X 102 to £7.9 X 10% with 28-29
Currenty, Yyou significant digits.

#* float can store any number from *1.5. X 10 to £3.4 X 10% with 7 significant digits.

usua"\/ want to
use a detimal —/ A “liteval” just means a number that you ’\\

v « When d th
to Stovc H“_ v type into your tode - Thc" You type fint Value i:/::ylctic‘/ in ‘
number- Literals have types, too i=5" the%isa liteval Your numericlUpDown

z‘,on‘l:rol, You wevre
using a decimal.

When you type a number directly into your C# program, you’re using a literal... and
every literal 1s automatically assigned a type. You can see this for yourself—just enter this
line of code that assigns the literal 14 .7 to an int variable:

int myInt = 14.7; Description

@ 1 Cannol implhicitly convert type "double’ Lo “inl'. An
cxplicit conversien casts (are you missing a cast?)

Now try to build the program. You’ll get this:

That’s the same error you’ll get if you try to set an int equalto a double variable.
the IDE s telling you is that the literal 14 . 7 has a type—it’s a double. You can change its

type to a £1oat by sticking an F on the end (14 . 7F). And 14 . 7Mis a decimal. £ You {:r\/ to assign a
The “M” stands for “money’—seviously! float Ii{Fral 'b° 3 double
A few more useful built-in types or a detimal literal to 5

Sometimes you need to store a single character like Q or 7 or §, and when you do you’ll float, the [DE will give
use the char type. Literal values for char are always inside single quotes ('x', '3"). Y4 @ helpul message
You can include escape sequences in the quotes, too (' \n"' is a line break, "\t "' is veminding you to add

a tab). You write an escape sequence in your CG# code using two characters, but your the vight swkfix. Cooll
program stores each escape sequence as a single character in memory.

And finally, there’s one more important type: object. You've already seen how you
can create objects by creating instances of classes. Well, every one of those objects can
be assigned to an object variable. You'll learn all about how objects and variables
that refer to objects work later in this chapter.

%u]” lcaYh a 'O‘t movre
about how ¢thar and
byte velate 4o each
other in Chapter 9.

_ @?vnm« ‘
.vcwew Windows 7 has a veally neat feature in Caleulator ealled “P\ro?v'ammcr"

mode, wheve you tan see binary and detimal at the same time!

You can use the Windows calculator to convert between decimal (normal, base-10) numbers and
binary numbers (base-2 numbers written with only ones and zeroes)—put it in Scientific mode, enter
a number, and click the Bin radio button to convert to binary. Then click Dec to convert it back. Now
enter some of the upper and lower limits for the whole number types (like —32,768 and 255)
and convert them to binary. Can you figure out why C# gives you those particular limits?

you are here » 127

i’ll take an ice cream float to go

A variable is like a data to-go cup

All of your data takes up space in memory. (Remember the heap
from last chapter?) So part of your job is to think about how much
space you’re going to need whenever you use a string or a number in
your program. That’s one of the reasons you use variables. They let
you set aside enough space in memory to store your data.

Think of a variable like a cup that you keep your data in. C# uses
a bunch of different kinds of cups to hold different kinds of data.
And just like the different sizes of cups at the coffee shop, there are
different sizes of variables, too.

ﬁl‘?a

You' Il use lon
or wholc
numbers 4} at

dre oi
reaH; 573 to be

short byte
ﬂ 64 32 16 8

set aside for the variable when you detlave it

These ave the number of bits of memory

Numbers that have decimal places are stored differently than
whole numbers. You can handle most of your numbers that have
decimal places using £1oat, the smallest data type that stores
decimals. If you need to be more precise, use a double. And

if you’re writing a financial application where you’ll be storing
currency values, you’ll want to use the decimal type.

It’s not always about numbers, though. (You wouldn’t expect to
get hot coffee in a plastic cup or cold coffee in a paper one.) The
C# compiler also can handle characters and non-numeric types.
The char type holds one character, and string is used for lots
of characters “strung” together. There’s no set size for a string
object, either. It expands to hold as much data as you need to store
in it. The bool data type is used to store true or false values, like
the ones you've used for your if statements.

128 Chapter 4

Not all data ends up on the heap- Value
types usually keep fheiv data in another
park of memory called the statk. Youll
leavn all about that in Chapter 14

\
int 18 Lommon\\[used for whole

numbers: |& holds numbers up
l 147,48%, b&1.

A short will hold whole numbers

b\/Jcc holds numbers
bc{:wm 2evo and 2565.

il

float double decimal

32 64 128

These bypes ave ©

rattions. Lavaer
vaviables store move

dcc\ma\ Y\aLCS

ou

bool char string
8 16 depends on
the size
of the string

types and references

10 pounds of data ina 9 pound bag

T h i) When you declare your variable as one type, that’s how your
-y & compiler looks at it. Even if the value is nowhere near the upper

i boundary of the type you've declared, the compiler will see the cup

it’s in, not the number inside. So this won’t work:

int leaguesUnderTheSea = 20000;

short smallerLeagues = leaguesUnderTheSea;

20,000 would fit into a short, no problem. But since
leaguesUnderTheSea is declared as an int, the compiler sees
it as int-sized and considers it too big to put in a short container.
The compiler won’t make those translations for you on the fly. You
need to make sure that you’re using the right type for the data
you’re working with.

20,000 ' ’:l;:is maics sense. What if you
i er Put g largcr Value ;
nt tup, one that woulut:n:'z féﬁf

All the compiler sees is an ‘i"'bO the short tup?
int going into a short ()Wh“"h Is {W‘)’ihg to Pv‘o{:cf::(; The Compiler
doesn't work). [t doesn't cave You.
about the value in the int tup. sho
_ rpen Your penci
B Three of these statements won't compile, either because they're
trying to cram too much data into a small variable or because
they're putting the wrong type of data in. Circle them.
int hours = 24; string taunt = “your mother”;
short y = 78000; byte days = 365;
bool isDone = yes; long radius = 3;
short RPM = 33; char initial = ‘S’;
int balance = 345667 - 567; string months = “12”;

you are here » 129

casting call

Even when a number is the right size,
you cant just assian it to any variable

Let’s see what happens when you try to assign *

a decimal value to an int variable. r_— Do t}lls

o Create a new project and add a button to it. Then add these lines to the
button’s Click () method:

decimal myDecimalValue = 10;
int myIntValue = myDecimalValue;

MessageBox.Show (“"The myIntValue is ” + myIntValue);

9 Try building your program. Uh oh—you got an error that looks like this:

Ernor List
&d 1 Error || 1 0 Warnangs i) D Messages
&1 {nﬂ.::-l::mfllrltl','rnnwﬂ type 'decimal’ to “int’. An explicd conversion ensts (ane you russeng a castT) C\’\Cﬂk ou‘{: how
mp pe p y ng the IDE Qigwcd
Sl ou‘{; {')\a‘{‘, \/OU
e Make the error go away by casting the decimal to an int. Once you change wevre ?“bab'\/

the second line so it looks like this, your program will compile and run: missing 3 tast.

int myIntValue = (int) myDecimalValue;

Heve's where You tast the Take a minute 4o «clip back

So what happened? detimal vaue to an int to the beginning of the last
thapter and theck out hoy,

The compiler won’t let you assign a value to a variable if it’s the wron; e—even .
P y g g typ You used Cas{:mf) when You

if that variable can hold the value just fine—because that’s the underlying cause Passed the Numevicld
behind an enormous number of bugs. When you use casting, you’re essentially Value 4o the 7; ”c:": PDown.
making a promise to the compiler that you know the types are different, and that — er Tester

in this particular instance it’s OK for C# to cram the data into the new variable.

_ rpen your pencil
y &Iutwn Three of these statements won't compile, either because they're

trying to cram too much data into a small variable or because
they’re putting the wrong type of data in. Circle them.

h holds
short y = 78000; I:;;:::Ert\{fc—;lﬂm byte days = 365; h
27,768. This
. J:’;mb";s 4o big! f; 'bY{Z} tan oh’y hold 3
bool isDone = @ y _ ue ot up {0 256, You'll
ou £an on!g aSS|5n a value o(: need a S"‘°V+f 100" ‘{:his.

K" “true” or “ alse” 4o a bool.

130 Chapter 4

types and references

When you cast a value that’s too TW"?P it Yourself/
big, C#* will adjust it avtomatically e o mystery o how casting “weaps”

You've already seen that a decimal can be cast to an it 4o Cpio s indows calculaﬁor, switeh
int. It turns out that any number can be cast to any other len

number. But that doesn’t mean the value stays intact ing the »

through the casting. If you cast an int variable that’s set does 3 modulo 2&'&:‘ 3 {Mo;j b“#‘l’nm which
to 365 to a byte variable, 365 is too big for the byte. But ion). You'l get 109.
instead of giving you an error, the value will just wrap
around: for example, 256 cast to a byte will have a value
of 0. 257 would be converted to 1, 258 to 2, etc., up to 363,
which will end up being 109. And once you get back to

255 again, the conversion value “wraps” back to zero.

~-M. You can’t always cast any type to any

other type. Create a new project, drag a
button onto a form, double-click on it, and type
these statements in. Then build your program—it
will give lots of errors. Cross out the ones that
give errors. That'll help you figure out which
types can be cast, and which can't!

Hey, I've been combining
numbers and strings in my

message boxes since I learned
about loops in Chapter 2! Have I
been converting types all along?

int myInt = 10;

byte myByte = (byte)myInt;

double myDouble = (double)myByte;
\ Yes! The + operator converts for bool myBool = (bool)myDouble;
' ou.
3 y string myString = “false”;
' ‘\‘ What you’ve been doing is using the +
] operator, which does a lot of converting myBool = (bool)myString;

for you automatically—but it’s especially myString = (string)myInt;

smart about it. When you use + to add a
number or Boolean to a string, then it’ll myString = myInt.ToString();
automatically convert that value to a string, myBool = (bool)myByte;
too. If you use + (or *, /, or =) with two v yEYRes

different types, it automatically converts myByte = (byte)myBool;

When you’
en Youre the smaller type to the bigger one.
855157\»\5 a numbey Here’s an example' short myShort = (short)myInt;
value to a double, .) .
Em need to add a —/l_nt,%\ char myChar = ‘x';
to the end of double myFloat = 16.4D; myString = (string)myChar;
the number +o0 £ell myFloat = myInt + myFloat;
the com iler long myLong = (long)myInt;
itsaf Piler that Since an int can fitinto a float buta
¢s a tloat, and it ' decimal myDecimal = (decimal)myLong;
not a doubl float can’t fitinto an int, the + operator ecimal myDecimal = (decimal)myLong;
e. ..
converts myInt to a float before adding it myString = myString + myInt + myByte
tomyFloat.

+ myDouble + myChar;

you are here » 131

a true convert

C# does some casting automatically

There are two important conversions that don’t require
you to do the casting. The first is done automatically any
time you use arithmetic operators, like in this example:

long 1 = 139401930; The — operator

short s = 516;

double d = 1 the vesult to a double.

d=d / 123.456;

MessageBox.Show (“The answer is ” (+)d);

When You use +it's smart cnough
to tonvert the detimal to a string,

The other way C# converts types for you automatically is when
you use the + operator to concatenate strings (which just
means sticking one string on the end of another, like you've been
doing with message boxes). When you use + to concatenate

a string with something that’s another type, it automatically
converts the numbers to strings for you. Here’s an example. The
first two lines are fine, but the third one won’t compile.

long x = 139401930;
MessageBox.Show (“"The answer is ” + x);

MessageBox.Show (x) ;

The C# compiler spits out an error that mentions something
about invalid arguments (an argument is what G# calls the
value that you’re passing into a method’s parameter). That’s
because the parameter for MessageBox . Show () isa
string, and this code passed a 1ong, which is the wrong
type for the method. But you can convert it to a string really
easily by calling its ToString () method. That method is a
member of every value type and object. (All of the classes you
build yourself have a ToString () method that returns the
class name.) That’s how you can convert x to something that
MessageBox.Show () can use:

MessageBox.Show (x.ToString()) ;

subtracted the short ha ml
£rom the |on5, and the r r n
= opevator tonverted % Pm you PB

s Solution

You can’t always cast any type to any other
type. Create a new project, drag a button onto a
form, and type these statements into its method.
Then build your program—it will give lots of
errors. Cross out the ones that give errors. That'll
help you figure out which types can be cast, and
which can't!

int myInt = 10;

byte myByte = (byte)myInt;

double myDouble = (double)myByte;
boot—myBeoet——(boolymyboubte;—

string myString = “false”;

myString = myInt.ToString();

~yBool = (boolimyByte;

myByte—(byte)myBooits;

short myShort = (short)myInt;
char myChar = ‘x’;
mySEring——tstringimyChas;

long myLong = (long)myInt;
decimal myDecimal = (decimal)myLong;

myString = myString + myInt + myByte
+ myDouble + myChar;

132 Chapter 4

types and

A pavameter is what You

efine in our method. An
When you call a method, the arguments must define in your method. A

arqument is what You pass

. . to it A method with an in
be compatible with the types of the parameters < ;7 »<ed o

Try calling MessageBox.Show (123) —passing MessageBox . Show () argument.
aliteral (123) instead of a string. The IDE won’t let you build your program. Wl[1‘
Instead, it’ll show you an error in the IDE: “Argument ‘1’: cannot convert from en the

‘nt’ to ‘string’.” Sometimes C# can do the conversion automatically—like if l .
your method expects an int, but you pass it a short—but it can’t do that for ComPl er glves

intsand strings. ee. .
S > you an invalid
But MessageBox. Show () isn’t the only method that will give you compiler

9
errors if you try to pass it a variable whose type doesn’t match the parameter. ar guments error,
All methods will do that, even the ones you write yourself. Go ahead and try . 11
typing this completely valid method into a class: 1t means that
public int MyMethod (bool yei§o) { | you triec[10 cau
. dc ‘k’,\\a{'/ calls .
if (yisNo) \ é ' One vcm\“dc"’{\;e;:)t have ko 93SS a meth()c[Wltll
return ! this Yaramc‘cc" o sN o H; \')usj\: has .
b & 3 vacidble Yc}a\\Td Y, or varidble: variables whose
return 61; it a Doolean No is '
) ko 9ass T ps called yes :
The on\\f \7\35:‘\:;‘0;)5 rode. tyPeS JIC[ﬂ t matCII

} nside the

the method’s

It works just fine if you pass it what it expects (a bool)—call MyMethod (true) or Par ameters.

MyMethod (false), and it compiles just fine. [—\ \/ou ¢an assign

But what happens if you pass it an integer or a string instead? The IDE gives you a anyjching 1o a variable,
similar error to the one that you got when you passed 123 to MessageBox . Show (). parameter, or field
Now try passing it a Boolean, but assigning the return value to a string or passing it on with the -Eypc ob\jct{:-

to MessageBox . Show (). That won’t work, either—the method returns an int, not
a long or the string that MessageBox.Show () expects.

if statements always Lest to see if something’s true

Did you notite how we wrote our if statement like this:

ik (\/csNo) { | v
4 == " That's because an if statement always

idn lieitly say “if (\/csNo === {'x?c) : . e

':/: f\‘((si':: s‘;aV:{t?n;:?{;r;c.\l ‘{o\:/ ctheek if something's (:alsc{: u(sm5 '\; (an c}(jlam;,h'o: ::‘lrnto ::
c ") . . W cs ° == se .
akor). if (IyesNo)” is the same ﬂ\mg“.as i (yesNo = I 4

{::ca ":7?35_ EE:Y now ov: \Ion:l' I usua“\/ Jus{: see us do i (\/csNo) or “if (!\lesNo) , and no
exam m ,

explicitly cheek to see if a Boolean is true or false.

133

this table is reserved Ad:ua“\/, CH# does give You a waz to use vesevved keywords as

vaviable names, by Pu{{:ing @ in front of the keyword. ea
do that with non—veserved names too, if You wa\v/\{:o*ba o o

There are about 77 reserved words in C#. These are words reserved by the C# compiler; you
can’'t use them for variable names. You'll know a lot of them really well by the time you finish the
book. Here are some you've already used. Write down what you think these words do in C#.

namespace

for

class

public

else

new

using

if

while

—> Answers on page 164.

134 Chapter 4

types and references

This label is]2
pt bold.

Create a reimbursement calculator for a business trip. It should allow the user to enter a starting
and ending mileage reading from the car’s odometer. From those two numbers, it will calculate
how many miles she’s traveled and figure out how much she should be reimbursed if her
company pays her $.39 for every mile she puts on her car.

Start with a new Windows project.

Make the form look like this:
) K\ Get vid of
a5l Mileage Calculator Iﬁ the minimize
and maximize
Starting Mileage |1 = ﬁ buttons.

Ending Mileage |4

L113

Amourt Owed l@beld

> (e

or the two NumcricMPDown

o

controls, set the Miimum Property

I and Maxcimum to 999994.

When you’re done with the form, double-click on the
button to add some code to the project.

Create the variables you'll need for the calculator.

Put the variables in the class definition at the top of Forml. You need two whole

number variables to track the starting odometer reading and the ending odometer reading;
Call them startingMileage and endingMileage. You need three numbers

that can hold decimal places. Make them doubles and call them milesTraveled,
reimburseRate, and amountOwed. Set the value for reimburseRate to .39.

Make your calculator work.
Add code in the buttonl Click () method to:

% Make sure that the number in the Starting Mileage field is smaller than the number
in the Ending Mileage field. If not, show a message box that says “The starting
mileage must be less than the ending mileage”. Make the title for the message box

“Cannot Calculate”.

% Subtract the starting number from the ending number and then multiply it by the
reimburse rate using these lines:

milesTraveled = endingMileage -= startingMileage;

amountOwed = milesTraveled *= reimburseRate;

labeld.Text = “$” + amountOwed;
Run it.

Make sure it’s giving the right numbers. Try changing the starting value to be higher than
the ending value and make sure it’s giving you the message box.

you are here »

135

something’s wrong...

You were asked to create a reimbursement calculator for a business trip. Here’s the code for the
. first part of the exercise.

XerciSe
SoLution

public partial class Forml : Form

{ .
10t works great for who
e

int startingMileage; K

numbers. This number could

int endingMileage; 9o all the way up to 999,999,
S
double milesTraveled; °‘? short or a byte
wont eut it.
double reimburseRate = .39;
double amountOwed;
public Forml () {
Did you vemember

InitializeComponent () ; that you have

} 4o thange the
gecimal value from
private void buttonl Click(object sender, EventArgs e) { the ,\umcv\f«u\’D°w"?
startingMileage = (int) numericUpDownl.Value; «——— tontrol to an int
endingMileage = (int)numericUpDownZ2.Value;
if (startingMileage <= endingMileage) { This block is
g g g g supposed to figwc
milesTraveled = endingMileage -= startingMileage; out how many
ile
amountOwed = milesTraveled *= reimburseRate; < Miies were {:Va.vclcd
and then muH-,.PIy

labeld.Text = “$” + amountOwed; them by the
veimbursement vate.

} else {

MessageBox.Show (
“The starting mileage must be less than the ending mileage”,

“Cannot Calculate Mileage”);
We used an alternate wa

: of ealling the MessageBox.
} Show() method here. We gave
} it two parameters: the first
This button seems to work, but it has a e is the message b display,
1) and the setond one goes in
pretty big problem. Can you spot it? the title bar

136 Chapter 4

types and references

Q Now add another button to the form.
Let’s track down that problem by adding a button to your form that shows the value
of themilesTraveled field. (You could also use the debugger for this!)

a5l Mileage Calculator ﬁ

Starting Mileage 10329 =

Clic}king this button after
Youve ¢licked Caleulate should
show the number of miles

traveled in a message box.

Ending Mileage 17354
Amount Chwed $53235

(i) <

When you’re done with the form, double-click on the
Display Miles button to add some code to the project.

e One line should do it.
All we need to do is get the form to display the milesTraveled variable, right? So this line

should do that:
private void button2 Click(object sender, EventArgs e) {

Messagebox.Show (milesTraveled + “ miles”, “Miles Traveled”);

9 Run it.

Type in some values and see what happens. First enter a starting mileage and
ending mileage, and click the Calculate button. Then click the Display Miles
button to see what’s stored in the milesTraveled field.

Miles Traveled (BoESa)

532.35 mile=

e Um, something’s not right...

No matter what numbers you use, the number of miles always matches the amount owed. Why?

you are here » 137

operators are standing by

Combining = with an operator

Take a good look at the operator we used to subtract ending mileage from
starting mileage (-=). The problem is it doesn’t just subtract, it also assigns

a value to the variable on the left side of the subtraction sign. The same
thing happens in the line where we multiply number of miles traveled by the
reimbursement rate. We should replace the -= and the *= with just - and *:

private void buttonl Click(object sender, EventArgs e) These are
- talled compound
{ och-a‘{'prs. T\'\ls
startingMileage = (int) numericUpDownl.Value; one subtratts

startingMileage
from endingMileage
if (startingMileage <= endingMileage) { but also assigns
{he new value
endingMileage and
amountOwed = milesTraveled@ reimburseRate; m\lCSTYaVCle at
H\C same bmc-

endingMileage = (int)numericUpDown2.Value;

milesTraveled = endingMileage /~= startingMileage;

labeld.Text = “$” + amountOwed];

} else {

MessageBox.Show (“The starting mildgge number must

be less than the eNding mileage number”,
“Cannot Calculate leage”);

This is better—now - - - - -
Jour €0 de won't modity milesTraveled = endingMileage - startingMileage;
endingMileage and
milesTraveled:

amountOwed = milesTraveled * reimburseRate;

So can good variable names help you out here? Definitely! Take a
close look at what each variable is supposed to do. You already get a lot of
clues from the name milesTraveled—you know that’s the variable that
the form is displaying incorrectly, and you’ve got a good idea of how that
value ought to be calculated. So you can take advantage of that when you’re
looking through your code to try to track down the bug. It’'d be a whole lot
harder to find the problem if the incorrect lines looked like this instead:

mT = eM -= sM; 5 Variables
named like L
_ _ S < ‘ is av
a0 = mT *= rR; in 'l:cuins ;w

eir Purpose might be.
138 Chapter 4

Objects use variables, too

types and

So far, we’ve looked at objects separate from other types. But
an object is just another data type. Your code treats objects
exactly like it treats numbers, strings, and Booleans. It uses

variables to work with them:
Using an int
———
@ Write a statement to declare the integer.

int myInt;

@ Assign a value to the new variable.

myInt = 3761;

@ Use the integer in your code.
while (i < myInt) {

Using an object

——

e Write a statement to declare the object.
DOg SPOt,‘ When \/ou have a ¢lass
like Dog, You use it as
bhhc type n a vaviable
detlaration statement.
e Assign a value to the object.
spot = new Dog() ;

e Check one of the object’s fields.

while (spot.IsHappy) ({

So it doesn't matter if I'm
working with an object or a numeric

value. If it's going into memory, and my

program needs to use it, I use a variable.

Objects are just one more type of
variable your program can use.

If your program needs to work with a whole
number that’s really big, use a long. If it needs

a whole number that’s small, use a short. If it
needs a yes/no value, use a boolean. And if it
needs something that barks and sits, use a Dog. No
matter what type of data your program needs to
work with, it’ll use a variable.

139

get the reference

Refer to your objects with reference variables

. . instantiating
When you create a new object, you use code like new Guy () . But that’s not enough; fhe ob\')ct{;
even though that code creates a new Guy object on the heap, it doesn’t give you
a way to access that object. You need a reference to the object. So you create &)
a reference variable: a variable of type Guy with a name, like joe. So joe
is a reference to the new Guy object you created. Any time you want to use that
particular guy, you can reference it with the reference variable called joe.

That's talled

So when you have a variable that is an object type, it’s a reference variable: a
reference to a particular object. Take a look:

6\

Here's the heap bekore your
tode vuns. Nothing thevre.

This vaviable public partial class Forml : Form
is named {

jo&, and will Guy joe;
vefevente

an ob)ct’t oﬁ/ public Forml ()
Lype Guy- (

Creating a vefevente is like making a label
with a label maker—instead of sticking it
on Your stuff, \/ou’rc using it to label an

InitializeComponent () ;

joe = new Guy() ; obiett so you tan vefer to it later.
b4/ o
This is the ...and this is the

rebevente vaviable... object that joe
J
now vefers {o.

Here's the heap a(:‘ccr'
Lhis tode vuns. Thevre's an

object, with the ?laviab\c o The ONLY vay 4,

Joe vekerving to it \7 @ ')&' reference this yé"z object
G,

is throuah
o 'S through the referent.
”» Ob)e‘c variable ¢alled Jjoe: "

140 Chapter 4

References are like labels for your object

In your kitchen, you probably have a container of salt and sugar. If you
switched their labels, it would make for a pretty disgusting meal—even
though the labels changed, the contents of the containers stayed the same.
References are like labels. You can move labels around and point them at
different things, but it’s the object that dictates what methods and data are
available, not the reference itself.

Fo\rml's bu'l:'l:on/_C’ick mc‘(‘)\od
has a varigble called “Joe” that

This ob\')CC‘{: is of 'l:\/?c 5“‘/- reverentes this ochc{.

[t's a SINGLE objeet with
MULTIPLE vefeventes.

An instance O‘F the 6!.«\/
elass is kching a veferente
to this object in a variable
called “Dad”.

ob\)cc{;.
You never refer to your object directly. For example, you can’t write code like
Guy .GiveCash () if Guy is your object type. The C# compiler doesn’t
know which Guy you’re talking about, since you might have several instances
of Guy on the heap. So you need a reference variable, like joe, that you
assign to a specific instance, like Guy joe = new Guy () .

Now you can call methods, like joe .GiveCash (). joe refers to a specific
mstance of the Guy class, and your C# compiler knows exactly which
instance to use. And, as you saw above, you might have multiple labels
pointing to the same instance. So you could say Guy dad = joe, and
then call dad.GiveCash (). That’s OK, too—that’s what Joe’s kid does
every day.

‘Evcry one of these labels
is a diffevent veference
vaviable, but '(:hcy all
point to the SAME 614\/

types and references

When your code
needs to work
with an oLject
in memory, it
uses a reference,
which is a
variable whose
type is a class
of the object it's
going to Point to.
A reference is
like a label that
your code uses
to talk about a
sPecific object.

N

\

There are lots of diffevent
rexerentes to this same Quy, bee

a. lot of dif«cc\rcn{: mc'[:hodsy us: e
him for diffevent {:hings. Each
vetevente has a different name

that makes sense in its tontext.

you are here » 141

that’s sanitation engineer thank you very much

If there aren’t any wmore references,
your object gets garbage-collected

If all of the labels come off of an object, programs can no longer
access that object. That means C# can mark the object for garbage
collection. That’s when C# gets rid of any unreferenced objects, and
reclaims the memory those objects took up for your program’s use.

0 Here's some code that creates an object.

Guy joe = new Guy()
{ Name = “Joe”, Cash = 50 };

/\>

When You use the “new’ statement,
you've \/{:cll'mg C# 1o treate an ~ok?cé’c- 62/)/ Obyf:\
When Yyou £ake a vefevente variable

like “Joe” and assign it to that

object, it's like you've slapping a new

label on it

e Now let's create a second object.

Guy bob = new Guy()
{ Name = “Bob”, Cash = 75 };

g0B ¢
“Bob”
75

ihS{ancesl ahd '(:wc
Variab’es: one ‘FOV‘ .

ach 6uy-

e Let's take the reference to the first object, and
change it to point at the second object.

/Sjoe = bob;

Now \)oc is Foih'{:ing to the same JOE

\\/

For an o]oject
to stay in the
heap, it has to
bhe referenced.
Some time
after the last
reference to
the olaject
Jisappears, SO

does the oLject.

-JOE.

X
G"}’ obS@c’x

J

But there is no longer
K cebevente to the

Liest 6“‘{ °b\.)cc+’"'

b; 0b. eog
o \)CC{: as b b “Bob” ~— Poo{! — <~ SO C# "\aY‘kS ‘thc
j 75)&\/ / objeet for 9arbage

eollection, and

. X
‘/y ob 3@0 / \ \ “’]C"f‘ﬂa”7 trashes it.

142 Chapter 4

H:S aonc

types and references

[y

Typecross

Take a break, sit back, and give
your right brain something

to do. It’s your standard
crossword; all of the solution
words are from this chapter.

When you’re done, turn the
page and take on the rest
of the chapter.

il

Across

1. The second part of a variable declaration

U "o«

4. “namespace’, “for’, “while”,
of words

using”, and “new” are examples

6. What (int) does in this line of code: x = (int) y;

8. When an object no longer has any references pointing to it,
it's removed from the heap using collection

10. What you're doing when you use the + operator to stick two
strings together

14. The numeric type that holds the biggest numbers
15. The type that stores a single letter or number

16.\nand \r are sequences

17. The four whole number types that only hold positive
numbers

ANEEEEEN

il

| |
i IIIIIWI
dAEEEEE dEEEEEE

Down

2. You can combine the variable declaration and the
into one statement

3. Avariable that points to an object

5. What your program uses to work with data that's in memory
7. If you want to store a currency value, use this type

9. += and -= are this kind of operator

11. A variable declaration always starts with this

12. Every object has this method that converts it to a string

13. When you've got a variable of this type, you can assign any
value to it

— Answers on page 165.

you are here » 143

so many labels

Multiple references and their side effects

You've got to be careful when you start moving around reference
variables. Lots of times, it might seem like you’re simply pointing

a variable to a different object. But you could end up removing all
references to another object in the process. That’s not a bad thing, but
it may not be what you intended. Take a look:

o Dog rover = new Dog();
rover.Breed = “Greyhound”;

Objects: ’

References: '

Dog fido = new Dog();

fido.Breed = “Beagle”;
Dog spot = rover; /»
\

Objects: Fido is anO'{',hCY‘ DOS Ob\)CC'{:- 009 Obs?’c
But Syo{: is 3“5{1 another
veferente o the fivst ob\)cc{:‘

-
‘w

References:

Dog lucky = new Dog() ; \\ /

= A\Y ” . \
?Jc;ky.Breed Dachshund”; ﬁ Poo-ﬂe—\
ido = rover;
Lutky is a thivd objeet. /
Z Bu{: Fido is now Poin‘{:ing / \ \
Objects: to Object #1. So, Object

4— #2 has no vefeventes.)g)
References: [£'s done as far as the b5) X
(o} ‘et
Program is tonterned. 9 obY

144 Chapter 4

types and

harl yuur PBnml Now it's your turn. Here's one long block of code. Figure out how many

objects and references there are at each stage. On the right-hand side,
draw a picture of the objects and labels in the heap.

o Dog rover = new Dog();
rover.Breed = “Greyhound”;
Dog rinTinTin = new Dog();
Dog fido = new Dog();
Dog quentin = fido;

Objects:
References:

e Dog spot = new Dog();
spot.Breed = “Dachshund”;
spot = rover;

Objects:

References:

e Dog lucky = new Dog();
lucky.Breed = “Beagle”;
Dog charlie = fido;
fido = rover;

Objects:

References:

e rinTinTin = lucky;
Dog laverne = new Dog();
laverne.Breed = “pug”;

Objects:

References:

e charlie = laverne;
lucky = rinTinTin;

Objects:

References:

145

swapping

Qhﬂrl yﬂur Penml Now it’s your turn. Here's one long block of code. Figure out how many

o Dog rover = new Dog() ;

146

\& &Iutwn objects and references there are at each stage. On the right-hand side,
draw a picture of the objects and labels in the heap.

rover.Breed = “Greyhound”;

Dog rinTinTin = new Dog();

Dog fido = new Dog () ;

Dog quentin = fido;

One new Dog objcd: is
ereated but Spot is the
only vefevence to it. When
Spot is set = to Rover,
that object goes away.

Objects: 3
References: 4—

Dog spot = new Dog();
spot.Breed = “Dachshund”;
spot = rover;

Heve a new Dog ob);c{', if
Objects:i eveated, but wha\l ido. is
set to Rover, Fido's obJeLJc

References: % \[from #| goes away.-

Dog lucky = new Dog();
lucky.Breed = “Beagle”;Charlie was set to Fido
Dog charlie = fido; when Fido was still on

fido = ; obieet #3. Then, after
e Tover K {:h%{:, Fido moved to ob\')cc{:

Objects: 4" #l, leaving Charlie behind.

References:7_ Dog #2 lost ks \ \ /

last vefevente, and ~~——
rinTinTin = lucky; it went away.

Dog laverne = new Dog(); \X
laverne.Breed = “pug”; / \ \

Objects: 4_ N
8 When Rin Tin Tin

References: moved to Lucky's
ob\)cé‘{‘,, the old Rin Tin
Tin ob\)cé‘{: disaF?carcd-

charlie = laverne;
lucky = rinTinTin;

Objects: 4— Here the veferentes move
around but no new obietts
References: g are eveated. And Scjcging,

Luck\/ +o Rin Tin Tin did
nothing because Jche\/ alveady
pointed to the same ob\)e(:b

types and references

Create a program with an elephant class. Make two elephant instances and then swap

\lciSe the reference values that point to them, without getting any E1ephant instances garbage-
Eie collected. ,
. Fﬂ'es the tlass diagram
Start with a new Windows Application project. or the Elephant
. . nt ¢lass
Make the form look like this: Ll You need 4,
Clicking on the «L.,cmdaA 0 A Create.
- " \
" \ls luginda Whorimi:
a5l Swap Iﬁ b‘;\#f:hd't\lsa\’\:‘f: Ehis message box- Elephant
wh Name
e EarSize
lurinda says... ﬁ
WhoAml()
S ——

Wy ears are 33 inches tall.

The Whohm|O method should pop
up this message box. Make sure the

message intludes the ear size and the

title bar intludes the name.

Q Create the Elephant class.
Add an Elephant class to the project. Have a look at the Elephant class diagram—you’ll need an int

field called EarSize and a String field called Name. (Make sure both are public.) Then add a method
called WhoAmI () that displays a message box that tells you the name and ear size of the elephant.

e Create two Elephant instances and a reference.
Add two Elephant fields to the Forml class (in the area right below the class declaration) named
Lloyd and Lucinda. Initialize them so they have the right name and ear size. Here are the
Elephant object initializers to add to your form:

lucinda = new Elephant () { Name = “Lucinda”, EarSize = 33 };
lloyd = new Elephant() { Name = “Lloyd”, EarSize = 40 };

e Make the “Lloyd” and “Lucinda” buttons work.
Have the Lloyd button call 11oyd.WhoAmI () and the Lucinda button call lucinda.WhoAmI ().

e Hook up the swap button.
Here’s the hard part. Make the Swap button exchange the two references, so that when you click
Swap, the L1oyd and Lucinda variables swap objects and a “Objects swapped” box is displayed.
Test out your program by clicking the Swap button and then clicking the other two buttons. The first
time you click Swap, the Lloyd button should pop up Lucinda’s message box, and the Lucinda button
should pop up Lloyd’s message box. If you click the Swap button again, everything should go back.

C# garbage-collects any object with no references to it. So here’s your

hint: If you want to pour a glass of beer into another glass that’s currently
full of water, you’ll need a third glass to pour the water into....

you are here » 147

hold that reference

ExerciSe

SoLution

Create a program with an elephant class. Make two elephant instances and then swap

the reference values that point to them, without getting any E1ephant instances garbage-
collected.

ms is the E\qahan{:

class Elephant {

Here's the Form| ¢lass code

Fkom Fornt/_\>

£ you just oint L\o\lt)i
|Joo\ll,mc\i)v\da,P{:hcrc wont
be any more ve eventes
Voin{:ing to L\oyd and
his ob\')cd; will be lost.
That's why You need
4o have the Holder
vefevente hold onto .
{hcl,byd d@ctﬁum{ﬂ
Lutinda tan get theve.

strings and arrays are
dﬂqkrcn{ from all of the
other data types you've
seen, betause they've the
on|\/ ones without a set size

(think about that for 3 bit).

using System.Windows.Forms;

public int EarSize;
public string Name;

public void WhoAmI () {

MessageBox.Show (“My ears are ” + EarSize + “ inches tall.”,
Name + “ says..”);

elass dcl:'m'\{'\on{:codc

in the Elephant.ts

?\\c we added to the
\wo")cc{:. Dont (:ovgcjc
the “using S\Is’cim\:
Windows.Forms) ine
at the top of the
elass. Without it, the
Mcssachw statement

wovx’{: work.

public partial class Forml

: Form {

Elephant lucinda;
Elephant 1lloyd;

public Forml ()
{
InitializeComponent () ;
lucinda = new Elephant ()
{ Name = “Lucinda”, EarSize = 33 };
lloyd = new Elephant ()

{ Name = “Lloyd”, EarSize = 40 };
}

private void buttonl Click(object sender, EventArgs e) ({
lloyd.WhoAmI () ;
}

private void button2 Click(object sender, EventArgs e) {
lucinda.WhoAmI () ;
}

private void button3 Click(object sender,
Elephant holder;
holder = 1lloyd;

EventArgs e) {

Theve's no new statement for the
)

lloyd = lucinda; € referente betause we don't want to

lucinda = holder; eveate another instante of Elephant.
MessageBox.Show (“Objects swapped”) ;

Why do you think we didn’t add a Swap() method to the Elephant class?

148 Chapter 4

types and references

Two references means TW0
ways to change an object’s data ¥

Besides losing all the references to an object, when (/— 0 t}l

you have multiple references to an object, you can

unintentionally change an object. In other words, one
reference to an object may change that object, while

another reference to that object has no idea that
something has changed. Watch:

o Add another button to your form.

e Add this code for the button. Can you guess what’s going to happen when you click it?

private void button4 Click(object sender, EventArgs e) AH:" this tode vuns,

(both the lloyd and lueinda
This statement lloyd = lucinda; “_’—/j variables veference the
says o set > lloyd.Barsize = 4321; SAME Elephant object.
EarSize o0 432] 1loyd.WhoAmI () ;4\/ Vou've ¢alling the ¢
on whatever } W\\OP\""‘O vnc{',\\od vom
ob%cd‘l: the ”o\/d the \‘w&’)wb
reterente happens P
to Poin{: +o. But “o‘/d Poih‘f:s at the same

'f‘)\ing that lutinda does.

e OK, go ahead and click the new button. Wait a second, that’s the Lucinda message epth\
box. Didn’t we call the WhoAmI () method from Lloyd?

Lucinda says... ﬁ
|£'s lutinda's
message 0o%-
My ears EW

But we set this
EarSize using the
“oyd V'c‘FcYCm',c! What

st
é\ Note that the
data is NOT being
i - to itten—the
inda are now 'V‘{"Cha“Scch_ Cb.\angcs overwritten .
lloyd EE?L{‘;uij:c 5: b):ié‘ that BOTH ave pointing at. only things thanging
Zv\‘\ccri's no longer @ veal differente between lloyd and ave the vefecentes.

lutinda, since they point to the SAME objeet

you are here » 149

pick an object out of a line-up

A special case: arrays

If you have to keep track of a lot of data of the same type, like a list of heights
or a group of dogs, you can do it in an array. What makes an array special is
that it’s a group of variables that’s treated as one object. An array gives you VYou ¢oyld tombin
a way of storing and changing more than one piece of data without having to of the m
keep track of each variable individually. When you create an array, you declare
it just like any other variable, with a name and a type:

e the declavation

o YACay variable wilh ;
mrl:ializ.a'(:ion—\st{: ;:l,(ac {:hWIf';:‘h'ﬁs
variable. Then it'd e

look like this:
/ boo”:] "‘)’Akray = new boo’[l 53;

You detlare an avvay by
specifyng i bpe Sl po01 1] myArray; This array has 12

by SO\MGYC bY'aCkC‘ts' ClC"\CV\‘tS wi{:\'\in i‘b

You use the new keyword myArray = new bool

to ereate an arvay beta — .
D o och:£. o Zm ctause myArray[4] = true;

3:23;/::2:]?/2!:;;]: fnd of This line :E{:s the Valu{; of Jchcl {fi('\}{c::
' . . ment of m e. [t's the
Use each element in an array like Zlni\{';\ Jcr:v\c bc;/:‘;z:a{\:/hc fn:s:: is m\/Arra/\/[Ol

it is a normal variable the second is myAvrayCld, ete.

When you use an array, first you need to declare a reference
variable that points to the array. Then you need to create the
array object using the new statement, specifying how big you ave mulkiple in
want the array to be. Then you can set the elements in the Jdhé{\,\ s within k.
array. Here’s an example of code that declares and fills up an vaiao’e
array—and what’s happening on the heap when you do it. The

first element in the array has an index of zero.

|n memory: the avvay

i stoved as on¢ thunk |
‘ £ memorYs even thoud
o

The {: Pe — 4 t height k.-\namc
of caZh intl] heights; 7 int variables
element in heights = new int[7];
h :
e e ((QI0IDIQIIT
\/ou i = . —
o terente heights[1] 70; 0 .I 2 .3 # :5 '5
{:\'\CSC b\l heights [2] = 63 ; int int int int int int int
index, but)
eath one heights[3] = 60;
wovks = — .
essentially heights[4] = 58;
like @ normal heights[5] = 72; - Notice that the array is an ob\')cc{:,
int vaviable. . ray even though the 7 elements are just
heights[6] = 74; value ‘{:\/ch-—likc the ones on the first
two pages of this chapter.

150 Chapter 4

types and references

Arrays can contain a bunch of
reference variables, too

You can create an array of object references just like you create an

array of numbers or strings. Arrays don’t care what type of variable Wl‘en you set or
they store; it’s up to you. So you can have an array of ints, or an
array of Duck objects, with no problem. retrieve an element

Here’s code that creates an array of 7 Dog variables. The line that
initializes the array only creates reference variables. Since there are
only two new Dog () lines, only two actual instances of the Dog

1 number inside the
class are created. This line detlaves a

£ dogs vaviable tohold o hrackets is called

= . arvay of veferentes to . .
Dogl] dogs = new Dogl7l; ot sdben the index. The first

dogs[5] = new Dog() ; ereates a T-element .
J 7 aveay. element in the array

from an array, the

dogs[0] = new Dog() ; 1

lnas an mc[ex of Z2€ro.
Thcse two lines ereate new
ms{;&nécs O1C Dogo and Pu'f:
them at indexes O and 5.

The fivst line of tode only
eveated the arvay, n?{'. the
instantes. The arvay 1s a

list of seven Doy vekevente
vaviables.

Bch

All of the elements in the array are
veferentes. The arvay itself is an ob\')ct:t-

you are here » 151

Notice how \/ou)\rc
ini{',ializ_ihg these
arvays? That's
talled a colleetion

sloppy joe sez: “it’s not old, it’s vintage”

Welcome to Sloppy Joe's Budget House o Discount Sandwiches!

Sloppy Joe has a pile of meat, a whole lotta bread, and more condiments

than you can shake a stick at. But what he doesn’t have is a menu! Can 9’6 *
you build a program that makes a new random menu for him every day?

Do this MenuMaker
* * Randomizer
Meats
G Start a new project and add a MenuMaker class Condiments
If you need to build a menu, you need ingredients. And arrays would be perfect Breads
for those lists. We’ll also need some way of choosing random ingredients to
combine together into a sandwich. Luckily, the .NET Framework has a built-in GetMenultem()
class called Random that generates random numbers. So we’ll have four fields

in our class: a Randomizer field that holds a reference to a Random object, and
three arrays of strings to hold the meats, condiments, and breads.

The ¢tlass has three fields +o
store three different arvays of

class MenuMaker { strin H:)” ¢ .

. . . . 9s. use them to build

TR-hcd‘(:wl.d cal:\c‘lids public Random Randomizer; [’chc random menu items.
angaomizeyr hol

a \r'c‘(:crcv\u to a string[] Meats = { “Roast beef”, “Salami”, “Turkey”, “Ham”,
Random ob\')cc{:-
Calling its Next()

“Pastrami” };
string[] Condiments = { “yellow mustard”, “brown mustard”,

“honey mustard”, “mayo”, “relish”, “french dressing” };

mc‘thOd Will 4 A\Y ” A\Y 3 ” A\Y ” A\Y 3 ”
QCV\CV‘B{:C vandom string[] Breads = { “rye”, “white”, “wheat”, “pumpernickel”,
“italian bread”, “a roll” };
rumbevs. , } Remember, use square brackets to

\\\/acccss a member of an avvay.The
value of Breads[2] is “wheat”.
Add a GetMenuItem() method to the class that generates a random sandwich

The point of the class is to generate sandwiches, so let’s add a method to do exactly that. It'll

use the Random object’s Next () method to choose a random meat, condiment, and bread

from each array. When you pass an int parameter to Next (), the method returns a random

that’s less than that parameter. So if your Random object is called Randomizer, then calling
Randomizer.Next (7) will return a random number between 0 and 6.

2)

initializer, and

\/ou’" learn all So how do you know what parameter to pass into the Next () method? Well, that’s easy—just
about them in pass in each array’s Length. That will return the index of a random item in the array.
Chapter @.

public string GetMenuItem() {
The GetMenultem() string randomMeat = Meats[Randomizer.Next (Meats.Length)];
method veturns string randomCondiment = Condiments[Randomizer.Next (Condiments.Length)];
a s{:\ring that \ string randomBread = Breads[Randomizer.Next (Breads.Length)];
tontains a sandwith return randomMeat + “ with ” + randomCondiment + “ on

built from vandom) The method puts a random item from the Meats array into randomMeat by

elements in the passing Meats.Lenath to the Random ob\')cc{:'s Next() method. Since there ave &

three aevays. items in the Meats arvay, Meats.Length is 5, so Next(5) will vetuen a random
number between O and 4

” 4+ randomBread;

162 Chapter 4

types and references

I eat all my meals
How it works... at Sloppy Joe's!

The vandomizer Next(7) m

ethod gets a vandom number that’
less than 7. Meats.Length veturns the number ozurlc:rc:c-tsais

Meats. So randomizer.Next (Meats. Length) gives
You @ random number that’s greater than or equal to zevo
but less than the number of elements in the Meats avray. }

Meats[Randomizer.Next (Meats.Length)]

\ i ! e elements,
i ay of strings. [£'s 9ot five e
& /:\Au:;::r:dazri‘: Zcro o 4. So Mca’s,(s[O]" ca\uals
“Roast Beek”, and Meats[3] equals Ham -

e Build your form
Add six labels to the form, 1albell through label6. Then add code to set each label’s
Text property using a MenuMaker object. You'll need to initialize the object using a new
instance of the Random class. Here’s the code:

Use an object initializer 4o set the
public Forml() { MenuMaker objc«:{:'s Randomizer field +o
InitializeComponent () ; ij new instance of the Random ¢lass.

MenuMaker menu = new MenuMaker () { Randomizer = new Random() }; Heve's somethin
labell.Text = menu.GetMenultem() ; L/ ‘xhj:"i(oj:wt
label2.Text = menu.GetMenuItem() ; Now \/ou'\rc all set to haﬂ?cn f you
label3.Text = menu.GetMenultem() ; 5“"3.& siv. diffevent ‘Forgo{: to
labeld.Text = menu.GetMenultem() ; vandom sandwithes using the initialize the
label5.Text = menu.GetMenultem() ; 6c’cMenuH:cm0 method. Mcnu/l:]aker
label6.Text = menu.GetMenulItem(); Ech:{" 5.
andomizer
J field? Can You
o Sloppy Joe's Menu u think of a way
th to keep this
When You vun the Salami with h tard Lrom happening?
vooram, the six labels ami with honey mustard on rye
‘:how six diffecent Roast beef with french dressing on wheat
vandom sandwithes. Turkey with yellow mustard on wheat

Turkey with mayo on white
Pastrami with relish on italian bread
Roast beef with french dressing on pumpernickel

you are here » 153

your object’s a chatty cathy

Objects use references to talk to each other Elephant
Name

So far, you've seen forms talk to objects by using reference variables to call their EarSize

methods and check their fields. Objects can call one another’s methods using

references, too. In fact, there’s nothing that a form can do that your objects can’t do, WhoAml()

because your form is just another object. And when objects talk to each other, TellMe()

one useful keyword that they have is this. Any time an object uses the this keyword, SpeakTo()

it’s referring to itself—it’s a reference that points to the object that calls it.

o

Here's a method to tell an elephant to speak
Let’s add a method to the Elephant class. Its first parameter is a message from an
elephant. Its second parameter is the elephant that said it:

public void TellMe (string message, Elephant whoSaidIt) {
MessageBox.Show (whoSaidIt.Name + “ says: ” + message,);

}

Here’s what it looks like when it’s called. You can add to button4 Click (), butadd it
before the statement that resets the references! (11oyd = lucinda;)

lloyd.TellMe (“Hi”, lucinda);

We called Lloyd’s Te11Me () method, and passed it two parameters: “Hi” and a reference to
Lucinda’s object. The method uses its whoSaidIt parameter to access the Name parameter
of whatever elephant was passed into Tel1Me () using its second parameter.

Here's a method that calls another method
Now let’s add this SpeakTo () method to the Elephant class. It uses a special keyword:
this. That’s a reference that lets an object talk about itself.

public void SpeakTo (Elephant whoToTalkTo, string message) {

whoToTalkTo.TellMe (message, this) " This method in the Elephant elass calls another

} Re elephant’s TalkTo() method. [t lets one elephant
Let’s take a closer look at how this works. tommunicate with another one.
lloyd.SpeakTo (lucinda, “Hello”);
When Lloyd’s SpeakTo () method is called, it uses its talkTo parameter (which has a
reference to Lucinda) to call Lucinda’s Te11Me () method.

whoToTalkTo.TellMe (message, this);

this is replaced
with a reference to
Lloyd’s object [Ueoyd says: Hello

| ==

Lloyd uses whoToTalkTo
(which has a reference to
Lucinda) to call Tel1Me ()

lucinda.TellMe (message, [a reference to Lloyd]);

So Lucinda acts as if she was called with ("Hello”, 11loyd), and shows this message:

154 Chapter 4

types and references

Where no object has gone before

There’s another important keyword that you’ll use with objects.
When you create a new reference and don’t set it to anything, it has
a value. It starts off set to null, which means it’s not pointing to

anything.

Righ'l: now, there’s onl

Y
Dog fido; [ﬁ one objeet. The fido

rC\CCVCnCC is set to null.)&I
Dog lucky = new Dog () ; <>0\9 ob'sef'\
Now that -Fido)s ?oin{:ing
to an ob cd‘{‘, I{’,S no
|0h5cr ca\ua| fo null.
fido = new Dog() ; 09 bke’c

When we set lucky to null,

r[:s no longcr Fom{:ms a'f: |+,s
objeet, so it gets garbage-
colleeted.

lucky = null;

Q} One more time—my form is an
object?

AI Yes! That's why your class code starts
with a class declaration. Open up code for
a form and see for yourself. Then open up
Program. cs in any program you've
written so far and look inside the Main ()
method—you'll find “new Forml ()"

Q: Why would | ever use null?

A: There are a few ways you see null
used in typical programs. The most common
way is testing for it:

t})ere are no
mb Questions

if (lloyd == null) {

That test will return true ifthe 11oyd
reference is setto null.

Another way you'll see the nul1 keyword
used is when you want your object to get
garbage-collected. If you've got a reference
to an object and you're finished with the
object, setting the reference to nul1 will
immediately mark it for collection (unless
there’s another reference to it somewhere).

Q: You keep talking about garbage
collecting, but what's actually doing the
collecting?

°9 ob 3@0

\\\ /

poof! — oy

//\\

R
O 9 ob'sﬁa

A: Remember how we talked about the
Common Language Runtime (or CLR)
back at the beginning of the first chapter?
That'’s the virtual machine that runs all .NET
programs. A virtual machine is a way for it
to isolate running programs from the rest of
the operating system. One thing that virtual
machines do is manage the memory that
they use. That means that it keeps track of
all of your objects, figures out when the last
reference to the object disappears, and frees
up the memory that it was using.

you are here » 155

this that

Q: I’'m still not sure | get how
references work.

- References are the way you use all of the
methods and fields in an object. If you create a
reference to a Dog object, you can then use
that reference to access any methods you've
created for the Dog object. If you have a

(non-static) method called Dog . Bark () or

Dog.Beg (), you can create a reference
called spot. Then you can use that to access
spot.Bark () orspot.Beg().You
could also change information in the fields for
the object using the reference. So you could
change a Breed field using spot . Breed.

Q- Wait, then doesn’t that mean that
every time | change a value through a
reference I’'m changing it for all of the
other references to that object, too?

A: Yes. If rover is a reference to the
same object as spot, changing rover.
Breed to “beagle” would make it so that
spot.Breed was “beagle.”

tbere are no °
Dumb Questions

Qt | still don’t get that stuff about
different types holding different sized
values. What'’s the deal with that?

A: OK. The thing about variables is they
assign a size to your number no matter how
big its value is. So if you name a variable
and giveita 1ong type even though the
number is really small (like, say, 5), the CLR
sets aside enough memory for it to get really
big. When you think about it, that's really
useful. After all, they're called variables
because they change all the time.

The CLR assumes you know what you're
doing and you’re not going to give a variable
a type that you don’t need. So even though
the number might not be big now, there’s a
chance that after some math happens, it'll
change. The CLR gives it enough memory

to handle whatever type of number you call it.

Q: Remind me again—what does
“this” do?

. thisis a special variable that you
can only use inside an object. When you're
inside a class, you use this to refer
to any field or method of that particular
instance. It's especially useful when you're
working with a class whose methods call
other classes. One object can use it to send
a reference to itself to another object. So
if Spot calls one of Rover’s methods
passing this as a parameter, he’s giving
Rover a reference to the Spot object.

Any time you’ve got
code in an o]oject
that's going to bhe
instantiated, the
instance can use the
special this variable
that has a reference
to itself.

QBULLET POINTS

When you declare a variable you ALWAY'S give a type. [

Theves actually a very specifie case whcrc you don't declare a type — you'll
learn about it when you use the “var” keyword in Chapter I4-

There are a few types (like short to int) that C#

Sometimes you combine it with setting the value.

There are value types for variables that hold different
sizes of numbers. The biggest numbers should be of the
type 1ong and the smallest ones (up to 255) can be
declared as bytes.

Every value type has a size, and you can't put a value of
a bigger type into a smaller variable, no matter what the
actual size of the data is.

When you're using literal values, use the F suffix to
indicate a float (15.6F) and M for a decimal (36.12M).

knows how to convert automatically. When the compiler
won't let you set a variable equal to a value of a different
type, that's when you need to cast it.

There are some words that are reserved by the
language and you can’t name your variables with them.
They're words like for, while, using, new, and
others that do specific things in the language.

References are like labels: you can have as many
references to an object as you want, and they all refer to
the same thing.

If an object doesn't have any references to it, it
eventually gets garbage-collected.

156

types and references

_ pen your pencil
- Here'’s an array of Elephant objects and a loop that will go through

it and find the one with the biggest ears. What's the value of the
biggestEars.Ears after each iteration of the for loop?

private void buttonl Click(object sender, EventArgs e)

{ We've ereating an aveay of 7
K‘“ Elephant() veferences.
Elephant[] elephants = new Elephant[7];
elephants[0] = new Elephant() { Name = “Lloyd”, EarSize = 40 };
avra

elephants[1l] = new Elephant() { Name = “Lucinda”, EarSize = 33 }; 5;:L'Mfg
elephants[2] = new Elephant() { Name = “Larry”, EarSize = 42 }; ind&<0,so{h€

. . fiest elephant
elephants[3] = new Elephant() { Name = “Lucille”, EarSize = 32 }; "\£hcarrayis
elephants[4] = new Elephant() { Name = “Lars”, EarSize = 44 }; Ekyh&ﬂ3[01
elephants[5] = new Elephant() { Name = “Linda”, EarSize = 37 };
elephants[6] = new Elephant () { Name = “Humphrey”, EarSize = 45 };

Iteration #1 biggestEars.EarSize =
Elephant biggestEars = elephants[0];

for (int 1 = 1; i < elephants.Length; i++)

t Iteration #2 biggestEars.EarSize =

if (elephants[i].EarSize > biggestEars.EarSize)
{

biggestEars = elephants[i];

} This line makes the biggestEars
veference point at whatever

} elephant elephantsCi] points +o.

MessageBox.Show (biggestEars.EarSize.ToString())

Iteration #3 biggestEars.EarSize =

"Tteration #4 biggestEars.EarSize =

Be caveful—this loop stavts
with the second element of the
arvay (at index 1) and itevates
six times until 1 is co\ual 4o the
length of the array.

Iteration #5 biggestEars.EarSize =

Iteration #6 biggestEars.EarSize =

—> /nswers on page 166.

you are here » 157

code magnets and pool puzzle

Code Magnets
The code for a button is all scrambled up on the fridge. Can you

reconstruct the code snippets to make a working method that
produces the output listed below?

refNum = index [v]

l

int refNum;

while (y < 4)

‘result += islands[refNum]; .
MessageBox.Show (result);

index {01}

index (1]
index (2]

index (3]

string[] islands = new string([4];

,result += ™\nisland = " '

=

y =yt 1;

island = Fiji I

island - Cozumel Private void buttoni i :

icland = Bermuda { ~Click (object sender,
wland = Arores

EventArgs e)

| i result = V77 .
string

—> [nswers on page 167.
168 Chapter 4

types and references

class Triangle o bh {’X‘f \70“"*' ‘Qov' ‘\:EC\ ith
— - e en . e WY
Pool Puzzle | s e 8
aplieation, 0\ e ot the 7
Your job is to take code snippets double area; the vioht using I
from the pool and place them int height;
into the blank lines in the int length;
code. You may use the same public static void Main(string[] args)
snippet more than once, and {
you won't need to use all the string results = “7;
snippets. Your goal is to make
a class that will compile and run
and produce the output listed.
while ()
{
Output ==
.height = (x + 1) * 2;
.length = x + 4;
tl!angleﬂ', area =4 results += “triangle ” + x + %, area”;
t'!E'HQIE]" area =10 results += “ = 7 + .area + “\n”;
triangle 2, area = 18
triangle 3, area = __)
!'I' =
x = 27; Hint: SetAvreal)
Triangle t5 = tal[2]; is NOT a
ta[2].area = 343; statie method.
results += “y =" + y; Fli? baek to
MessageBox.Show (results + Cha\v£cv 2 ‘(:or

, t5 area = ” + t5.area); 3 vefresher on
Bonus Question! }

what the statie
For extra bonus points, use snippets void setArea() Q/

kc\/word means.
from the pool to fill in the two blanks {
missing from the output.

= (height * length) / 2;

Note: Each snippet from
the pool can be used
more than once.

4, t5area=18
area 4, t5 area =343 Nt X
ta.area 27,t5area=18 '

X ta.x.area inty;

27,15 area = 343 . x=x+1; Lo
y talxl.area intx=0; X=X+2 ta(x)
ta[x] = setArea(); i =1 =x -1; x<4
* Triangle [] ta = new Triangle(4); ta[x]— setArea()(') mz X ~ 1' x=x-1; ta[x] .
Triangle ta = new [] Triangle[4]; o 7 WSS ta = new Triangle();
ta[x].setArea(); 28
Triangle [] ta = new Triangle[4];

30.0 ta[x] = new Triangle();
' ta.x = new Triangle();

— > Answers on page 168.

you are here » 159

build something fun!

Build a typing game

You've reached a milestone..you know enough to build a game! Here’s how your game will
work. The form will display random letters. If the player types one of them, it disappears
and the accuracy rate goes up. If the player types an incorrect letter, the accuracy rate
goes down. As the player keeps typing letters, the game goes faster and faster, getting more

difficult with each correct letter. If the form fills up with letters, the game is over! r—:x(DQ iS *

Comect: 18 Missed: 3 Totak 21 Accuracy- 85% Difficulty | —

o Build the form.

Here’s what the form will look like in the form designer:

o Hib the k! E
I - t B I

3
Correct: 0 Migied 0 Totak) Accuracy: 0% Dethculty] =i

You’ll need to:

% Turn off the minimize box and maximize box. Then set the form’s FormBorderStyle
property to Fixed3D. That way, the player won’t be able to accidentally drag and resize it.
Then resize it so that it’s much wider than it is tall (we set our form’s size to 876, 174).

#* Draga ListBox out of the Toolbox onto the form. Set its Dock property to Fill, and its
MultiColumn property to True. Set its Font to 72 point bold.

#* In the Toolbox, expand the “All Windows Forms” group at the top. This will display many
controls. Find the Timer control and double-click on it to add it to your form.

#* Find the StatusStrip in the “All Windows Forms” group in the Toolbox and double-
click on it to add a status bar to your form. You should now see the StatusStrip and
Timer icons in the gray area at the bottom of the form designer:

X €3 timerl k= statusStripl See how you can use a Timer to make your
form do more than one thing at once? Take

a minute and flip to #3 in the “Leftovers”

160 Chapter 4 appendix to learn about another way to do that.

(]

types and references

Relﬂx You’ll be using three new

controls, but they’re easy

*

. : ith!
@ Sset up the StatusStrip control. : to work with!
Take a closer look at the status bar at the bottom of the " Fven though you haven’t seen a ListBox
. . . N >
screenshot. On one side, it’s got a series of labels: : StatusStrip, or Timer before, you already
. bl 3
| Correct: 18 Missed: 3 Totak 21 Accuracy: 5% | know how to set their properties and work

: with them in your code. You’ll learn a lot

And on the other side, it’s got a label and a progress bar: .
IS8 prog : more about them in the next few chapters.

[Difficulty m— |

Add a StatusLabel to your StatusStrip by clicking its drop-down and selecting StatusLabel:

A Slaluslabel

Tl ProgressBar t!\‘
7= DropDownButton

(]

SplitButton

#* Setthe StatusStrip’s SizingGrip property to False.

% Use the Properties window to setits (Name) to correctLabel and its Text to “Correct: 0.
Add three more StatusLabels: missedLabel, totallLabel, and accuracyLabel.

#* Add one more StatusLabel. Setits Spring to True, TextAlign to MiddleRight, and
Text to “Difliculty”. Finally, add a ProgressBar and name it difficultyProgressBar.

€ set up the Timer control.
Did you notice how your Timer control didn’t show up on your form? That’s because
the Timer is a non-visual control. It doesn’t actually change the look and feel of the
form. It does exactly one thing: it calls a method over and over again. Set the
Timer control’s Interval property to 800, so that it calls its method every 800
milliseconds. Then double-click on the #imerl! icon in the designer. The IDE will
do what it always does when you double-click on a control: it will add a method to
your form. This time, it’ll add one called timer1l Tick. Here’s the code for it:

private void timerl Tick(object sender, EventArgs e)

{ You'll add a field called
// Add a random key to the ListBox “candom’ in \')us{: a minute.
listBoxl.Items.Add((Keys)random.Next (65, 90)); Can You quess what its
if (listBoxl.Items.Count > 7) type will be?

{
listBoxl.Items.Clear();

listBoxl.Items.Add (“Game over”);
timerl.Stop () ; *

you are here » 161

the key

o

X

162

to a great game

Add a class to keep track of the player stats.

If the form is going to display the total number of keys the player pressed, the number that
were missed and the number that were correct, and the player’s accuracy, then we’ll need
a way to keep track of all that data. Sounds like a job for a new class! Add a class called
Stats to your project. It'll have four int fields called Total, Missed, Correct, and
Accuracy, and a method called Update with one bool parameter: true if the player
typed a correct letter that was in the ListBox, or false if the player missed one.

class Stats

{
public int Total = 0;
public int Missed = 0;
public int Correct = 0;
public int Accuracy = 0;

public void Update (bool correctKey)
{
Total++;

if (!correctKey)

{

Stats

Total
Missed
Correct
Accuracy

Update()

Missed++;
}
else Every time the Update() method is
{ called, it vecaleulates the % ecovvect
Correct++; /_ and Pu{:s it in the Accwacy field.
}

Accuracy = 100 * Correct / (Missed + Correct);

Add fields to your form to hold a Stats object and a Random object.
You’ll need an instance of your new Stats class to actually store the information,
so add a field called stats to store it. And you already saw that you’ll need a field
called random—it’ll contain a Random object.

Add the two fields to the top of your form:

public partial class Forml : Form

{
Random random = new Random() ;
Stats stats = new Stats();

Chapter 4

types and references

>*
e Handle the keystrokes.

There’s one last thing your game needs to do: any time the player hits a key, it needs to check if that key
1s correct (and remove the letter from the ListBox if it is), and update the stats on the StatusStrip.

Go back to the form designer and select the form. Click this button to
Then go to the Properties window and click on the (i thange the Properties
lightning bolt button. Scroll to the KeyDown row - window’s view. The
and double-click on it. This tells the IDE to add &= I:FL:LH - . button to the left

a method called Forml KeyDown () that gets ﬁ Forr_KeyDewn [of it switehes the
called every time the user presses a key. Here’s the KeyPress Properties window
code for the method: it back to showing you

private void Forml KeyDown (object sender, KeyEventArgs e) ?ro?cr'(:lcs.
{

o // If the user pressed a key that's in the ListBox, remove it These ave called
This if s’(’,a{:cmcn’{:.\ // and then make the game a little faster events, and \/ou'll
theeks the ListBox if (listBoxl.Items.Contains (e.KeyCode)) learn a lot more
o see if it contains { about them later on.
the kcy the Yla\/ﬁ listBoxl.Items.Remove (e.KeyCode) ;
pressed. |£ it does, listBoxl.Refresh();
then H\t\ckcy gets +E (Eiﬂii igt:izi _:428). This is the part that increases the diffieulty
r